Invariants
| Base field: | $\F_{167}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 46 x + 855 x^{2} - 7682 x^{3} + 27889 x^{4}$ |
| Frobenius angles: | $\pm0.0116366186044$, $\pm0.214984126313$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.14912.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $3$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $21017$ | $766553041$ | $21680822113136$ | $604963446088901561$ | $16871926902961694800177$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $122$ | $27484$ | $4655072$ | $777791604$ | $129891977742$ | $21691958216014$ | $3622557468289490$ | $604967114480502948$ | $101029508493801990176$ | $16871927924454950153004$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2=117 x^6+116 x^5+73 x^4+24 x^3+82 x^2+165 x+79$
- $y^2=83 x^6+34 x^5+74 x^4+6 x^3+68 x^2+58 x+31$
- $y^2=32 x^6+165 x^5+44 x^4+120 x^3+60 x^2+24 x+11$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{167}$.
Endomorphism algebra over $\F_{167}$| The endomorphism algebra of this simple isogeny class is 4.0.14912.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.167.bu_bgx | $2$ | (not in LMFDB) |