Properties

Label 2.167.abu_bgx
Base field $\F_{167}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{167}$
Dimension:  $2$
L-polynomial:  $1 - 46 x + 855 x^{2} - 7682 x^{3} + 27889 x^{4}$
Frobenius angles:  $\pm0.0116366186044$, $\pm0.214984126313$
Angle rank:  $2$ (numerical)
Number field:  4.0.14912.2
Galois group:  $D_{4}$
Jacobians:  $3$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $21017$ $766553041$ $21680822113136$ $604963446088901561$ $16871926902961694800177$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $122$ $27484$ $4655072$ $777791604$ $129891977742$ $21691958216014$ $3622557468289490$ $604967114480502948$ $101029508493801990176$ $16871927924454950153004$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{167}$.

Endomorphism algebra over $\F_{167}$
The endomorphism algebra of this simple isogeny class is 4.0.14912.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.167.bu_bgx$2$(not in LMFDB)