Invariants
| Base field: | $\F_{167}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 44 x + 813 x^{2} - 7348 x^{3} + 27889 x^{4}$ |
| Frobenius angles: | $\pm0.112931184243$, $\pm0.222892358760$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.559025.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $32$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $21311$ | $769220545$ | $21692376200384$ | $605001454670128025$ | $16872034451782656053431$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $124$ | $27580$ | $4657552$ | $777840468$ | $129892805724$ | $21691971082990$ | $3622557659181172$ | $604967117237389668$ | $101029508532486547504$ | $16871927924972288913900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=34 x^6+118 x^5+164 x^4+36 x^3+136 x^2+113 x+135$
- $y^2=140 x^6+4 x^5+136 x^4+133 x^3+88 x^2+12 x+120$
- $y^2=35 x^6+96 x^5+88 x^4+55 x^3+4 x^2+90 x+63$
- $y^2=9 x^6+139 x^5+150 x^4+126 x^3+119 x^2+110 x+119$
- $y^2=102 x^6+107 x^5+23 x^4+109 x^3+15 x^2+42 x+39$
- $y^2=165 x^6+45 x^5+48 x^4+99 x^3+16 x^2+34 x+39$
- $y^2=55 x^6+47 x^5+141 x^4+155 x^3+156 x^2+109 x+52$
- $y^2=27 x^6+56 x^5+39 x^4+96 x^3+162 x^2+141 x+110$
- $y^2=29 x^6+80 x^5+72 x^4+128 x^3+153 x^2+147 x+111$
- $y^2=100 x^6+58 x^5+96 x^4+131 x^3+126 x^2+60 x+32$
- $y^2=x^6+114 x^5+81 x^4+30 x^3+38 x^2+125 x+25$
- $y^2=8 x^6+71 x^5+125 x^4+113 x^3+110 x^2+74 x+41$
- $y^2=110 x^6+142 x^5+160 x^4+140 x^3+8 x^2+92 x+119$
- $y^2=63 x^6+26 x^5+42 x^4+76 x^3+23 x^2+80 x+136$
- $y^2=57 x^6+10 x^5+109 x^4+41 x^3+156 x^2+139 x+14$
- $y^2=145 x^6+101 x^5+143 x^4+18 x^3+69 x^2+32 x+62$
- $y^2=149 x^6+82 x^5+43 x^4+162 x^3+68 x^2+153 x+89$
- $y^2=3 x^6+26 x^5+107 x^4+89 x^3+118 x^2+63 x+73$
- $y^2=32 x^6+148 x^5+115 x^4+74 x^3+53 x^2+99 x+109$
- $y^2=153 x^6+61 x^5+114 x^4+139 x^3+59 x^2+111 x+129$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{167}$.
Endomorphism algebra over $\F_{167}$| The endomorphism algebra of this simple isogeny class is 4.0.559025.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.167.bs_bfh | $2$ | (not in LMFDB) |