Invariants
| Base field: | $\F_{167}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 44 x + 805 x^{2} - 7348 x^{3} + 27889 x^{4}$ |
| Frobenius angles: | $\pm0.0434254521130$, $\pm0.247924377782$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.688337.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $34$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $21303$ | $768761361$ | $21687450639552$ | $604973402008177401$ | $16871923575591307449183$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $124$ | $27564$ | $4656496$ | $777804404$ | $129891952124$ | $21691955596014$ | $3622557435915668$ | $604967114690152228$ | $101029508510725282000$ | $16871927924858890758204$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 34 curves (of which all are hyperelliptic):
- $y^2=78 x^6+153 x^5+123 x^4+145 x^3+52 x^2+164 x+26$
- $y^2=110 x^6+155 x^5+146 x^4+132 x^3+87 x^2+55 x+117$
- $y^2=93 x^6+123 x^5+122 x^4+66 x^3+28 x^2+62 x+30$
- $y^2=104 x^6+37 x^5+50 x^4+5 x^3+77 x+128$
- $y^2=60 x^6+159 x^5+119 x^4+40 x^3+139 x^2+92 x+107$
- $y^2=56 x^6+34 x^5+141 x^4+139 x^3+134 x^2+24 x+132$
- $y^2=47 x^6+117 x^5+126 x^4+81 x^3+16 x^2+45 x+67$
- $y^2=144 x^6+112 x^5+63 x^4+160 x^3+108 x^2+61 x+45$
- $y^2=24 x^6+150 x^5+135 x^4+85 x^3+58 x^2+32 x+31$
- $y^2=4 x^6+141 x^5+15 x^4+139 x^3+17 x^2+73 x+84$
- $y^2=2 x^6+15 x^5+163 x^4+162 x^3+141 x^2+102 x+63$
- $y^2=91 x^6+73 x^5+64 x^4+77 x^3+122 x^2+38 x+46$
- $y^2=85 x^6+51 x^5+77 x^4+125 x^3+5 x^2+31 x+120$
- $y^2=103 x^6+19 x^5+110 x^4+88 x^3+118 x^2+85 x+80$
- $y^2=129 x^6+127 x^5+43 x^4+123 x^3+156 x^2+162 x+121$
- $y^2=28 x^6+69 x^5+8 x^4+64 x^3+149 x^2+131 x+43$
- $y^2=16 x^6+153 x^5+30 x^4+11 x^3+100 x^2+48 x+139$
- $y^2=54 x^6+105 x^5+91 x^4+48 x^3+109 x^2+147 x+155$
- $y^2=92 x^6+37 x^5+69 x^4+144 x^3+108 x^2+125 x+128$
- $y^2=35 x^6+121 x^5+68 x^4+105 x^3+11 x^2+107 x+131$
- and 14 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{167}$.
Endomorphism algebra over $\F_{167}$| The endomorphism algebra of this simple isogeny class is 4.0.688337.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.167.bs_bez | $2$ | (not in LMFDB) |