Invariants
| Base field: | $\F_{167}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 12 x + 167 x^{2} )( 1 + 12 x + 167 x^{2} )$ |
| Frobenius angles: | $\pm0.346308130027$, $\pm0.653691869973$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | 6375 |
This isogeny class is not simple.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
This isogeny class contains the Jacobians of 6375 curves, and hence is principally polarizable:
- $y^2=75x^6+147x^5+47x^4+128x^3+157x^2+115x+117$
- $y^2=41x^6+67x^5+68x^4+139x^3+117x^2+74x+84$
- $y^2=118x^6+65x^5+151x^4+75x^3+59x^2+119x+40$
- $y^2=131x^6+156x^5+39x^4+159x^3+111x^2+158x+149$
- $y^2=154x^6+112x^5+28x^4+127x^3+54x^2+122x+77$
- $y^2=79x^6+19x^5+47x^4+132x^3+139x^2+90x+142$
- $y^2=4x^6+47x^5+46x^4+92x^3+132x^2+96x+123$
- $y^2=20x^6+68x^5+63x^4+126x^3+159x^2+146x+114$
- $y^2=10x^6+37x^5+8x^4+95x^3+137x^2+12x+42$
- $y^2=50x^6+18x^5+40x^4+141x^3+17x^2+60x+43$
- $y^2=140x^6+103x^5+104x^4+77x^3+164x^2+154x+87$
- $y^2=32x^6+14x^5+19x^4+51x^3+152x^2+102x+101$
- $y^2=17x^6+62x^5+48x^4+30x^3+117x^2+103x+111$
- $y^2=57x^6+80x^5+45x^4+24x^3+50x^2+65x+64$
- $y^2=118x^6+66x^5+58x^4+120x^3+83x^2+158x+153$
- $y^2=148x^6+130x^5+36x^4+60x^3+87x^2+101x+78$
- $y^2=72x^6+149x^5+13x^4+133x^3+101x^2+4x+56$
- $y^2=24x^6+56x^5+45x^4+73x^3+3x^2+134x+12$
- $y^2=120x^6+113x^5+58x^4+31x^3+15x^2+2x+60$
- $y^2=137x^6+9x^5+95x^4+102x^3+144x^2+44x+88$
- and 6355 more
Point counts of the abelian variety
| $r$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $A(\F_{q^r})$ | 28080 | 788486400 | 21691952558640 | 604997729856000000 | 16871927924959158308400 | 470540805806288442638649600 | 13122923468187020838031023741360 | 365985214017917247315715286016000000 | 10206961594320420340222156756888886201520 | 284661951905016649470981112183772749510560000 |
| $r$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $C(\F_{q^r})$ | 168 | 28270 | 4657464 | 777835678 | 129891985608 | 21691943520910 | 3622557586593624 | 604967119297872958 | 101029508532509551848 | 16871927924989221458350 |
Decomposition and endomorphism algebra
Endomorphism algebra over $\F_{167}$| The isogeny class factors as 1.167.am $\times$ 1.167.m and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{167^{2}}$ is 1.27889.hi 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-131}) \)$)$ |
Base change
This is a primitive isogeny class.