Invariants
| Base field: | $\F_{163}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 24 x + 163 x^{2} )^{2}$ |
| $1 - 48 x + 902 x^{2} - 7824 x^{3} + 26569 x^{4}$ | |
| Frobenius angles: | $\pm0.110906256499$, $\pm0.110906256499$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $14$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $19600$ | $692742400$ | $18737297395600$ | $498298198325760000$ | $13239662582857049290000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $116$ | $26070$ | $4326572$ | $705893038$ | $115063848356$ | $18755378181510$ | $3057125409995612$ | $498311416966474078$ | $81224760569903050196$ | $13239635967451661911350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):
- $y^2=16 x^6+99 x^4+99 x^2+16$
- $y^2=6 x^6+140 x^5+121 x^4+124 x^3+121 x^2+140 x+6$
- $y^2=58 x^6+101 x^5+36 x^4+91 x^3+74 x^2+129 x+20$
- $y^2=52 x^6+150 x^5+51 x^4+51 x^3+54 x^2+83 x+32$
- $y^2=112 x^6+89 x^5+42 x^4+161 x^3+128 x^2+121 x+162$
- $y^2=118 x^6+70 x^4+70 x^2+118$
- $y^2=52 x^6+102 x^5+37 x^4+145 x^3+79 x^2+145 x+20$
- $y^2=34 x^6+23 x^5+139 x^4+104 x^3+139 x^2+23 x+34$
- $y^2=52 x^6+26 x^5+95 x^4+81 x^3+95 x^2+26 x+52$
- $y^2=118 x^6+97 x^5+20 x^4+x^3+129 x^2+132 x+10$
- $y^2=113 x^6+103 x^4+103 x^2+113$
- $y^2=109 x^6+70 x^5+123 x^4+73 x^3+117 x^2+7 x+103$
- $y^2=107 x^6+16 x^5+115 x^4+130 x^3+115 x^2+16 x+107$
- $y^2=121 x^6+6 x^5+128 x^4+124 x^3+19 x^2+71 x+99$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{163}$.
Endomorphism algebra over $\F_{163}$| The isogeny class factors as 1.163.ay 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-19}) \)$)$ |
Base change
This is a primitive isogeny class.