Invariants
| Base field: | $\F_{163}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 25 x + 163 x^{2} )( 1 - 19 x + 163 x^{2} )$ |
| $1 - 44 x + 801 x^{2} - 7172 x^{3} + 26569 x^{4}$ | |
| Frobenius angles: | $\pm0.0652307277549$, $\pm0.232879815243$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $40$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $20155$ | $697100985$ | $18751177806640$ | $498322461366498825$ | $13239663301093020866275$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $120$ | $26236$ | $4329780$ | $705927412$ | $115063854600$ | $18755369426374$ | $3057125182221720$ | $498311413131803428$ | $81224760521510597580$ | $13239635967006227806636$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=77 x^6+48 x^5+51 x^4+140 x^3+120 x^2+75 x+94$
- $y^2=72 x^6+144 x^5+124 x^4+5 x^3+141 x^2+113 x+111$
- $y^2=5 x^6+159 x^5+21 x^4+43 x^3+31 x^2+84 x+75$
- $y^2=70 x^6+125 x^5+83 x^4+78 x^3+139 x^2+35 x+84$
- $y^2=113 x^6+35 x^5+121 x^4+146 x^3+86 x^2+48 x+160$
- $y^2=72 x^6+21 x^5+19 x^4+150 x^2+8 x+105$
- $y^2=101 x^6+x^5+9 x^4+157 x^3+9 x^2+x+101$
- $y^2=12 x^6+10 x^5+154 x^4+7 x^3+89 x^2+16 x+147$
- $y^2=81 x^6+40 x^5+126 x^4+72 x^3+54 x^2+14 x+4$
- $y^2=133 x^6+20 x^5+73 x^4+136 x^3+67 x^2+107 x+120$
- $y^2=19 x^6+79 x^5+55 x^4+99 x^3+64 x^2+106 x+120$
- $y^2=29 x^6+66 x^5+46 x^4+85 x^3+41 x^2+19 x+124$
- $y^2=31 x^6+33 x^5+114 x^4+32 x^3+17 x^2+150 x+125$
- $y^2=83 x^6+10 x^5+18 x^4+124 x^3+17 x^2+40 x+78$
- $y^2=4 x^6+139 x^5+115 x^4+72 x^3+22 x^2+45 x+94$
- $y^2=46 x^6+91 x^5+55 x^4+104 x^3+115 x^2+138 x+106$
- $y^2=138 x^6+153 x^5+55 x^4+96 x^3+58 x^2+105 x+99$
- $y^2=42 x^6+50 x^5+110 x^4+126 x^3+105 x^2+64 x+148$
- $y^2=67 x^6+162 x^5+50 x^4+42 x^3+86 x^2+153 x+44$
- $y^2=130 x^6+106 x^5+5 x^4+77 x^3+108 x^2+112 x+76$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{163}$.
Endomorphism algebra over $\F_{163}$| The isogeny class factors as 1.163.az $\times$ 1.163.at and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.