Invariants
| Base field: | $\F_{157}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 24 x + 157 x^{2} )( 1 - 22 x + 157 x^{2} )$ |
| $1 - 46 x + 842 x^{2} - 7222 x^{3} + 24649 x^{4}$ | |
| Frobenius angles: | $\pm0.0929086555916$, $\pm0.158946998144$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $20$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $18224$ | $597018240$ | $14965221369392$ | $369145834560921600$ | $9099100440945786045104$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $112$ | $24218$ | $3867088$ | $607574254$ | $95389417552$ | $14976080878826$ | $2351243412634480$ | $369145196213333086$ | $57955795564572022576$ | $9099059901172544402618$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=19 x^6+151 x^5+19 x^4+62 x^3+117 x^2+73 x+68$
- $y^2=125 x^6+67 x^5+38 x^4+12 x^3+38 x^2+67 x+125$
- $y^2=30 x^6+18 x^5+93 x^4+102 x^3+42 x^2+70 x+51$
- $y^2=104 x^6+54 x^5+32 x^4+37 x^3+32 x^2+54 x+104$
- $y^2=2 x^6+146 x^5+150 x^4+85 x^3+62 x^2+31 x+54$
- $y^2=133 x^6+47 x^5+142 x^4+19 x^3+23 x^2+17 x+24$
- $y^2=22 x^6+64 x^5+18 x^4+71 x^3+6 x^2+42 x+152$
- $y^2=149 x^6+21 x^5+153 x^4+17 x^3+153 x^2+21 x+149$
- $y^2=140 x^6+10 x^5+68 x^4+87 x^3+68 x^2+10 x+140$
- $y^2=72 x^6+155 x^5+13 x^4+97 x^3+13 x^2+155 x+72$
- $y^2=7 x^6+70 x^5+62 x^4+147 x^3+62 x^2+70 x+7$
- $y^2=6 x^6+97 x^5+40 x^4+54 x^3+40 x^2+97 x+6$
- $y^2=150 x^6+14 x^5+27 x^4+79 x^3+9 x^2+19 x+23$
- $y^2=142 x^6+91 x^5+156 x^4+30 x^3+100 x^2+28 x+63$
- $y^2=101 x^6+16 x^5+107 x^4+87 x^3+7 x^2+144 x+58$
- $y^2=149 x^6+56 x^5+85 x^4+92 x^3+85 x^2+56 x+149$
- $y^2=85 x^6+145 x^5+3 x^4+7 x^3+3 x^2+145 x+85$
- $y^2=96 x^6+136 x^5+121 x^4+83 x^3+75 x^2+128 x+135$
- $y^2=13 x^6+74 x^5+89 x^4+94 x^3+13 x^2+70 x+52$
- $y^2=125 x^6+147 x^5+131 x^4+110 x^3+131 x^2+147 x+125$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{157}$.
Endomorphism algebra over $\F_{157}$| The isogeny class factors as 1.157.ay $\times$ 1.157.aw and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.