Invariants
| Base field: | $\F_{157}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 46 x + 840 x^{2} - 7222 x^{3} + 24649 x^{4}$ |
| Frobenius angles: | $\pm0.0515472603327$, $\pm0.177395699406$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.412992.5 |
| Galois group: | $D_{4}$ |
| Jacobians: | $8$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $18222$ | $596916276$ | $14964151176126$ | $369139636523072976$ | $9099074508281416709502$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $112$ | $24214$ | $3866812$ | $607564054$ | $95389145692$ | $14976075048694$ | $2351243306799520$ | $369145194548377438$ | $57955795541751486976$ | $9099059900904009245254$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):
- $y^2=125 x^6+49 x^5+144 x^4+141 x^2+132 x+76$
- $y^2=152 x^6+152 x^5+103 x^4+61 x^3+74 x^2+60 x+154$
- $y^2=96 x^6+95 x^5+118 x^4+115 x^3+94 x^2+65 x+23$
- $y^2=72 x^6+111 x^5+8 x^4+77 x^3+156 x^2+89 x+51$
- $y^2=89 x^6+122 x^5+2 x^4+30 x^3+99 x^2+135 x+23$
- $y^2=123 x^6+53 x^5+130 x^4+27 x^3+57 x^2+126 x+120$
- $y^2=98 x^6+125 x^5+75 x^4+135 x^3+41 x^2+152 x+7$
- $y^2=45 x^6+146 x^5+21 x^4+147 x^3+70 x^2+84 x+20$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{157}$.
Endomorphism algebra over $\F_{157}$| The endomorphism algebra of this simple isogeny class is 4.0.412992.5. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.157.bu_bgi | $2$ | (not in LMFDB) |