Invariants
| Base field: | $\F_{157}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 25 x + 157 x^{2} )( 1 - 21 x + 157 x^{2} )$ |
| $1 - 46 x + 839 x^{2} - 7222 x^{3} + 24649 x^{4}$ | |
| Frobenius angles: | $\pm0.0220179720414$, $\pm0.183729987215$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $4$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $18221$ | $596865297$ | $14963616087056$ | $369136533867138009$ | $9099061476136699522301$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $112$ | $24212$ | $3866674$ | $607558948$ | $95389009072$ | $14976072091622$ | $2351243252077552$ | $369145193654555716$ | $57955795528588253338$ | $9099059900726078728532$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=119 x^6+21 x^5+102 x^4+21 x^3+72 x^2+80 x+6$
- $y^2=150 x^6+137 x^5+125 x^4+113 x^3+9 x^2+8 x+115$
- $y^2=69 x^6+25 x^5+53 x^4+47 x^3+126 x^2+35 x+13$
- $y^2=96 x^6+16 x^5+76 x^4+84 x^3+76 x^2+16 x+96$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{157}$.
Endomorphism algebra over $\F_{157}$| The isogeny class factors as 1.157.az $\times$ 1.157.av and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.