Invariants
| Base field: | $\F_{157}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 22 x + 157 x^{2} )^{2}$ |
| $1 - 44 x + 798 x^{2} - 6908 x^{3} + 24649 x^{4}$ | |
| Frobenius angles: | $\pm0.158946998144$, $\pm0.158946998144$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $49$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $18496$ | $599270400$ | $14973866073664$ | $369169982760960000$ | $9099154080552453998656$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $114$ | $24310$ | $3869322$ | $607613998$ | $95389979874$ | $14976087147430$ | $2351243459480442$ | $369145196171522398$ | $57955795554615614034$ | $9099059900933560926550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 49 curves (of which all are hyperelliptic):
- $y^2=120 x^6+130 x^5+109 x^4+32 x^3+64 x^2+109 x+47$
- $y^2=5 x^6+149 x^3+80$
- $y^2=131 x^6+95 x^5+122 x^4+145 x^3+12 x^2+131 x+114$
- $y^2=116 x^6+88 x^4+88 x^2+116$
- $y^2=5 x^6+98 x^3+87$
- $y^2=20 x^6+134 x^5+76 x^4+x^3+108 x^2+151 x+34$
- $y^2=93 x^6+99 x^5+38 x^4+21 x^3+38 x^2+99 x+93$
- $y^2=151 x^6+42 x^5+17 x^4+26 x^3+17 x^2+42 x+151$
- $y^2=30 x^6+20 x^5+39 x^4+3 x^3+146 x^2+98 x+31$
- $y^2=45 x^6+14 x^5+141 x^4+50 x^3+75 x^2+39 x+128$
- $y^2=38 x^6+30 x^5+93 x^4+146 x^3+98 x^2+4 x+28$
- $y^2=72 x^6+119 x^4+119 x^2+72$
- $y^2=18 x^6+3 x^5+57 x^4+119 x^3+39 x^2+111 x+26$
- $y^2=13 x^6+135 x^5+139 x^4+55 x^3+26 x^2+80 x+112$
- $y^2=66 x^6+88 x^5+139 x^4+89 x^3+55 x^2+110 x+45$
- $y^2=83 x^6+89 x^5+18 x^4+61 x^2+37 x+50$
- $y^2=77 x^6+127 x^5+7 x^4+102 x^3+98 x^2+86 x+123$
- $y^2=30 x^6+15 x^4+15 x^2+30$
- $y^2=5 x^6+2 x^3+38$
- $y^2=136 x^6+3 x^5+89 x^4+22 x^3+49 x^2+13 x+151$
- and 29 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{157}$.
Endomorphism algebra over $\F_{157}$| The isogeny class factors as 1.157.aw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.