Invariants
| Base field: | $\F_{157}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 43 x + 765 x^{2} - 6751 x^{3} + 24649 x^{4}$ |
| Frobenius angles: | $\pm0.0408247231830$, $\pm0.242255315239$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.76725.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $16$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $18621$ | $599763789$ | $14971910056641$ | $369148907776102821$ | $9099059097050910510336$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $115$ | $24331$ | $3868819$ | $607579315$ | $95388984130$ | $14976067398307$ | $2351243161126303$ | $369145192751482819$ | $57955795529013965383$ | $9099059900939207148886$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=85 x^6+24 x^5+66 x^4+11 x^3+62 x^2+41 x+127$
- $y^2=18 x^6+58 x^5+6 x^4+126 x^3+144 x^2+52 x+118$
- $y^2=135 x^6+108 x^5+63 x^4+67 x^3+89 x^2+123 x+127$
- $y^2=142 x^6+136 x^5+144 x^4+x^3+83 x^2+112 x+15$
- $y^2=103 x^6+104 x^5+137 x^4+111 x^3+133 x^2+85 x+87$
- $y^2=58 x^6+18 x^5+7 x^4+61 x^3+27 x^2+71 x+15$
- $y^2=24 x^6+107 x^5+93 x^4+3 x^3+20 x^2+55 x+124$
- $y^2=111 x^6+103 x^5+31 x^4+88 x^3+37 x^2+146 x+114$
- $y^2=132 x^6+x^5+79 x^4+16 x^3+112 x^2+78 x+114$
- $y^2=136 x^6+61 x^5+26 x^4+35 x^3+138 x^2+30 x+133$
- $y^2=119 x^6+28 x^5+11 x^4+4 x^3+58 x^2+135 x+78$
- $y^2=63 x^6+2 x^5+75 x^4+119 x^3+4 x^2+88 x+104$
- $y^2=146 x^6+127 x^5+76 x^4+18 x^3+44 x^2+108 x+102$
- $y^2=38 x^6+88 x^5+54 x^4+138 x^3+139 x^2+108 x+119$
- $y^2=17 x^6+128 x^5+129 x^4+97 x^3+10 x^2+50 x+125$
- $y^2=98 x^6+60 x^5+136 x^4+81 x^3+22 x^2+83 x+150$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{157}$.
Endomorphism algebra over $\F_{157}$| The endomorphism algebra of this simple isogeny class is 4.0.76725.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.157.br_bdl | $2$ | (not in LMFDB) |