Invariants
| Base field: | $\F_{151}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 23 x + 151 x^{2} )^{2}$ |
| $1 - 46 x + 831 x^{2} - 6946 x^{3} + 22801 x^{4}$ | |
| Frobenius angles: | $\pm0.114627783796$, $\pm0.114627783796$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $8$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $16641$ | $509630625$ | $11841884969616$ | $270274876478105625$ | $6162697988644771717641$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $106$ | $22348$ | $3439456$ | $519873748$ | $78502981006$ | $11853919249198$ | $1789940787503506$ | $270281040136414948$ | $40812436782624439456$ | $6162677950618152114748$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):
- $y^2=121 x^6+51 x^5+35 x^4+x^3+35 x^2+51 x+121$
- $y^2=38 x^6+149 x^5+25 x^4+139 x^3+25 x^2+149 x+38$
- $y^2=94 x^6+111 x^5+51 x^4+62 x^3+51 x^2+111 x+94$
- $y^2=32 x^6+144 x^5+118 x^4+42 x^3+118 x^2+144 x+32$
- $y^2=142 x^6+99 x^5+43 x^4+80 x^3+43 x^2+99 x+142$
- $y^2=15 x^6+133 x^5+84 x^4+43 x^3+84 x^2+133 x+15$
- $y^2=32 x^6+98 x^5+149 x^4+76 x^3+74 x^2+67 x+27$
- $y^2=x^6+x^3+86$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{151}$.
Endomorphism algebra over $\F_{151}$| The isogeny class factors as 1.151.ax 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.