Invariants
| Base field: | $\F_{151}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 45 x + 805 x^{2} - 6795 x^{3} + 22801 x^{4}$ |
| Frobenius angles: | $\pm0.0475440466108$, $\pm0.181284900557$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.4901.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $15$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $16767$ | $510504849$ | $11844156000717$ | $270276842053038141$ | $6162687770964163730352$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $107$ | $22387$ | $3440117$ | $519877531$ | $78502850852$ | $11853913913647$ | $1789940663577467$ | $270281037907191523$ | $40812436749195383897$ | $6162677950193975786302$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 15 curves (of which all are hyperelliptic):
- $y^2=133 x^6+24 x^5+76 x^4+139 x^3+97 x^2+34 x+71$
- $y^2=67 x^6+81 x^5+58 x^4+142 x^3+65 x^2+137 x+117$
- $y^2=60 x^6+43 x^5+127 x^4+139 x^3+117 x^2+33 x+142$
- $y^2=75 x^6+93 x^5+103 x^4+25 x^3+11 x^2+66 x+42$
- $y^2=34 x^6+41 x^5+130 x^4+41 x^3+32 x^2+17 x+26$
- $y^2=138 x^6+134 x^5+80 x^4+68 x^3+48 x^2+89 x+135$
- $y^2=37 x^6+31 x^4+148 x^3+148 x^2+3 x+70$
- $y^2=6 x^6+107 x^5+128 x^4+8 x^3+97 x^2+121 x+65$
- $y^2=21 x^6+33 x^5+18 x^4+45 x^3+105 x^2+89 x+7$
- $y^2=109 x^6+75 x^5+134 x^4+72 x^3+108 x^2+52 x+117$
- $y^2=150 x^6+78 x^5+134 x^4+76 x^3+34 x^2+24 x+58$
- $y^2=41 x^6+49 x^5+112 x^4+32 x^3+24 x^2+134 x+77$
- $y^2=44 x^6+112 x^5+91 x^4+45 x^3+96 x^2+145 x+141$
- $y^2=119 x^6+65 x^5+38 x^4+97 x^3+110 x^2+86 x+114$
- $y^2=126 x^6+61 x^5+115 x^4+44 x^3+86 x^2+89 x+15$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{151}$.
Endomorphism algebra over $\F_{151}$| The endomorphism algebra of this simple isogeny class is 4.0.4901.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.151.bt_bez | $2$ | (not in LMFDB) |