Properties

Label 2.151.abt_bez
Base field $\F_{151}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{151}$
Dimension:  $2$
L-polynomial:  $1 - 45 x + 805 x^{2} - 6795 x^{3} + 22801 x^{4}$
Frobenius angles:  $\pm0.0475440466108$, $\pm0.181284900557$
Angle rank:  $2$ (numerical)
Number field:  4.0.4901.1
Galois group:  $D_{4}$
Jacobians:  $15$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $16767$ $510504849$ $11844156000717$ $270276842053038141$ $6162687770964163730352$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $107$ $22387$ $3440117$ $519877531$ $78502850852$ $11853913913647$ $1789940663577467$ $270281037907191523$ $40812436749195383897$ $6162677950193975786302$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 15 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{151}$.

Endomorphism algebra over $\F_{151}$
The endomorphism algebra of this simple isogeny class is 4.0.4901.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.151.bt_bez$2$(not in LMFDB)