Properties

Label 2.151.abp_bbf
Base field $\F_{151}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{151}$
Dimension:  $2$
L-polynomial:  $1 - 41 x + 707 x^{2} - 6191 x^{3} + 22801 x^{4}$
Frobenius angles:  $\pm0.0376027983571$, $\pm0.264041825482$
Angle rank:  $2$ (numerical)
Number field:  4.0.10258797.1
Galois group:  $D_{4}$
Jacobians:  $16$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $17277$ $513835257$ $11852073122643$ $270283267133336925$ $6162664960037073959952$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $111$ $22535$ $3442419$ $519889891$ $78502560276$ $11853904559627$ $1789940517366441$ $270281036542453171$ $40812436746147736809$ $6162677950344140175230$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{151}$.

Endomorphism algebra over $\F_{151}$
The endomorphism algebra of this simple isogeny class is 4.0.10258797.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.151.bp_bbf$2$(not in LMFDB)