Invariants
| Base field: | $\F_{151}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 41 x + 707 x^{2} - 6191 x^{3} + 22801 x^{4}$ |
| Frobenius angles: | $\pm0.0376027983571$, $\pm0.264041825482$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.10258797.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $16$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $17277$ | $513835257$ | $11852073122643$ | $270283267133336925$ | $6162664960037073959952$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $111$ | $22535$ | $3442419$ | $519889891$ | $78502560276$ | $11853904559627$ | $1789940517366441$ | $270281036542453171$ | $40812436746147736809$ | $6162677950344140175230$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=81 x^6+88 x^5+126 x^4+109 x^3+115 x^2+66 x+54$
- $y^2=137 x^6+55 x^5+4 x^4+120 x^3+110 x^2+42 x+147$
- $y^2=104 x^6+43 x^5+144 x^4+17 x^3+56 x^2+17 x+89$
- $y^2=127 x^6+80 x^5+55 x^4+94 x^3+39 x+21$
- $y^2=116 x^6+127 x^5+109 x^4+32 x^3+49 x^2+30 x+107$
- $y^2=54 x^6+97 x^5+98 x^4+80 x^3+110 x^2+56 x+149$
- $y^2=13 x^6+84 x^5+43 x^4+56 x^3+144 x^2+77 x+11$
- $y^2=89 x^6+108 x^5+124 x^4+29 x^3+6 x^2+143 x+92$
- $y^2=115 x^6+32 x^5+121 x^4+119 x^3+131 x^2+116 x+103$
- $y^2=44 x^6+26 x^5+109 x^4+98 x^3+149 x^2+134 x+73$
- $y^2=131 x^6+98 x^5+79 x^4+102 x^3+47 x^2+130 x+52$
- $y^2=49 x^6+110 x^5+23 x^4+77 x^3+89 x^2+66 x+67$
- $y^2=64 x^6+138 x^5+140 x^4+72 x^3+65 x^2+23 x+53$
- $y^2=82 x^6+69 x^5+109 x^4+85 x^3+105 x^2+127 x+87$
- $y^2=123 x^6+138 x^5+51 x^4+49 x^3+15 x^2+24 x+148$
- $y^2=119 x^6+79 x^5+115 x^4+133 x^3+29 x^2+13 x+92$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{151}$.
Endomorphism algebra over $\F_{151}$| The endomorphism algebra of this simple isogeny class is 4.0.10258797.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.151.bp_bbf | $2$ | (not in LMFDB) |