Invariants
| Base field: | $\F_{149}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 24 x + 149 x^{2} )( 1 - 20 x + 149 x^{2} )$ |
| $1 - 44 x + 778 x^{2} - 6556 x^{3} + 22201 x^{4}$ | |
| Frobenius angles: | $\pm0.0586410025892$, $\pm0.194400112214$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $36$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $16380$ | $484520400$ | $10935398352060$ | $242935582675968000$ | $5393416233909565215900$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $106$ | $21822$ | $3305794$ | $492885518$ | $73439987786$ | $10942529349582$ | $1630436473192514$ | $242935032483576478$ | $36197319872170760746$ | $5393400661958180801502$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=80 x^6+43 x^5+101 x^4+146 x^3+4 x^2+88 x+129$
- $y^2=21 x^6+128 x^5+123 x^4+45 x^3+113 x^2+77 x+8$
- $y^2=140 x^6+25 x^5+57 x^4+147 x^3+57 x^2+25 x+140$
- $y^2=103 x^6+129 x^5+48 x^4+110 x^3+38 x^2+63 x+16$
- $y^2=51 x^6+107 x^5+21 x^4+15 x^3+53 x^2+132 x+119$
- $y^2=38 x^6+64 x^5+12 x^4+102 x^3+12 x^2+64 x+38$
- $y^2=126 x^6+108 x^5+129 x^4+21 x^3+90 x^2+98 x+39$
- $y^2=82 x^6+81 x^5+123 x^4+112 x^3+118 x^2+44 x+131$
- $y^2=35 x^6+127 x^5+145 x^4+139 x^3+121 x^2+99 x+46$
- $y^2=93 x^6+93 x^5+81 x^4+141 x^3+113 x^2+99 x+102$
- $y^2=106 x^6+68 x^5+147 x^4+130 x^3+147 x^2+34 x+15$
- $y^2=90 x^6+113 x^5+118 x^4+23 x^3+118 x^2+113 x+90$
- $y^2=24 x^6+67 x^5+43 x^4+52 x^3+43 x^2+67 x+24$
- $y^2=2 x^6+40 x^5+72 x^4+41 x^2+90 x+105$
- $y^2=16 x^6+11 x^5+26 x^4+119 x^3+92 x^2+9 x+140$
- $y^2=34 x^6+89 x^5+76 x^4+114 x^3+40 x^2+22 x+110$
- $y^2=44 x^6+130 x^5+93 x^4+117 x^3+93 x^2+130 x+44$
- $y^2=113 x^6+8 x^5+72 x^4+56 x^3+41 x^2+18 x+47$
- $y^2=86 x^6+126 x^5+26 x^4+124 x^3+5 x^2+58 x+46$
- $y^2=22 x^6+45 x^5+142 x^4+120 x^3+142 x^2+45 x+22$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{149}$.
Endomorphism algebra over $\F_{149}$| The isogeny class factors as 1.149.ay $\times$ 1.149.au and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.