Properties

Label 2.149.abp_bbl
Base field $\F_{149}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{149}$
Dimension:  $2$
L-polynomial:  $1 - 41 x + 713 x^{2} - 6109 x^{3} + 22201 x^{4}$
Frobenius angles:  $\pm0.116678124869$, $\pm0.232039777634$
Angle rank:  $2$ (numerical)
Number field:  4.0.8928045.2
Galois group:  $D_{4}$
Jacobians:  $34$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $16765$ $487274725$ $10944021617305$ $242954079080495125$ $5393445839783145365200$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $109$ $21947$ $3308401$ $492923043$ $73440390914$ $10942532673707$ $1630436498408141$ $242935032826379203$ $36197319879932052889$ $5393400662112036526502$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 34 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{149}$.

Endomorphism algebra over $\F_{149}$
The endomorphism algebra of this simple isogeny class is 4.0.8928045.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.149.bp_bbl$2$(not in LMFDB)