Invariants
| Base field: | $\F_{149}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 41 x + 713 x^{2} - 6109 x^{3} + 22201 x^{4}$ |
| Frobenius angles: | $\pm0.116678124869$, $\pm0.232039777634$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.8928045.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $34$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $16765$ | $487274725$ | $10944021617305$ | $242954079080495125$ | $5393445839783145365200$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $109$ | $21947$ | $3308401$ | $492923043$ | $73440390914$ | $10942532673707$ | $1630436498408141$ | $242935032826379203$ | $36197319879932052889$ | $5393400662112036526502$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 34 curves (of which all are hyperelliptic):
- $y^2=51 x^6+76 x^5+102 x^4+102 x^3+141 x^2+103 x+14$
- $y^2=132 x^6+130 x^5+17 x^3+84 x^2+39 x+90$
- $y^2=96 x^6+41 x^5+18 x^4+42 x^3+104 x^2+92 x+128$
- $y^2=12 x^6+77 x^5+55 x^4+119 x^3+52 x^2+81$
- $y^2=83 x^6+86 x^5+129 x^4+41 x^3+64 x^2+115 x+145$
- $y^2=30 x^6+71 x^5+26 x^4+50 x^3+95 x^2+76 x+51$
- $y^2=41 x^6+97 x^5+127 x^4+138 x^3+133 x^2+66 x+78$
- $y^2=138 x^6+145 x^5+102 x^4+108 x^3+70 x^2+11 x+40$
- $y^2=96 x^6+4 x^5+89 x^4+16 x^3+131 x^2+55 x+49$
- $y^2=14 x^6+111 x^5+53 x^4+89 x^3+37 x^2+24 x+52$
- $y^2=79 x^6+121 x^5+29 x^4+71 x^3+20 x^2+145 x+141$
- $y^2=62 x^6+71 x^5+66 x^4+102 x^3+47 x^2+72 x+41$
- $y^2=59 x^6+46 x^5+96 x^4+90 x^3+146 x^2+86 x$
- $y^2=19 x^6+60 x^5+31 x^4+82 x^3+144 x^2+119 x+68$
- $y^2=40 x^6+124 x^5+4 x^4+31 x^3+87 x^2+22 x+130$
- $y^2=75 x^6+8 x^5+13 x^4+103 x^3+54 x^2+102 x+35$
- $y^2=137 x^6+133 x^5+76 x^4+141 x^3+86 x^2+37 x+52$
- $y^2=70 x^6+76 x^5+47 x^4+10 x^3+41 x^2+8 x+75$
- $y^2=20 x^6+131 x^5+77 x^4+69 x^3+38 x^2+113 x+11$
- $y^2=95 x^6+42 x^5+52 x^4+38 x^3+86 x^2+124 x+44$
- and 14 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{149}$.
Endomorphism algebra over $\F_{149}$| The endomorphism algebra of this simple isogeny class is 4.0.8928045.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.149.bp_bbl | $2$ | (not in LMFDB) |