Invariants
| Base field: | $\F_{137}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 - 40 x + 666 x^{2} - 5480 x^{3} + 18769 x^{4}$ | 
| Frobenius angles: | $\pm0.0710640823629$, $\pm0.237869879993$ | 
| Angle rank: | $2$ (numerical) | 
| Number field: | 4.0.27200.2 | 
| Galois group: | $D_{4}$ | 
| Jacobians: | $44$ | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $13916$ | $347287696$ | $6610519275164$ | $124102708061889536$ | $2329202300344601817436$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $98$ | $18502$ | $2570834$ | $352288926$ | $48261895458$ | $6611856237478$ | $905824276012754$ | $124097929446096318$ | $17001416401620954338$ | $2329194047586806054022$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=54 x^6+49 x^5+76 x^4+86 x^3+87 x^2+112 x+60$
- $y^2=102 x^6+18 x^5+134 x^4+20 x^3+43 x^2+118 x+43$
- $y^2=110 x^6+128 x^5+39 x^4+41 x^3+37 x^2+84 x+134$
- $y^2=118 x^6+95 x^5+27 x^4+60 x^3+125 x^2+46 x+128$
- $y^2=20 x^6+103 x^5+101 x^4+86 x^3+35 x^2+60 x+26$
- $y^2=126 x^6+50 x^5+67 x^4+55 x^3+127 x^2+99 x+17$
- $y^2=130 x^6+93 x^5+130 x^4+131 x^3+111 x^2+10 x+5$
- $y^2=83 x^6+33 x^5+118 x^4+135 x^3+x^2+96 x+133$
- $y^2=42 x^6+48 x^5+5 x^4+98 x^3+99 x^2+59 x+106$
- $y^2=17 x^6+62 x^5+118 x^4+63 x^3+80 x^2+54 x+118$
- $y^2=51 x^6+113 x^5+43 x^4+20 x^3+9 x^2+7 x+120$
- $y^2=49 x^6+85 x^5+35 x^4+44 x^3+132 x^2+127 x+66$
- $y^2=126 x^6+71 x^5+48 x^4+64 x^3+12 x^2+111 x+134$
- $y^2=54 x^6+63 x^5+45 x^4+35 x^3+109 x^2+112 x+27$
- $y^2=82 x^6+37 x^5+20 x^4+74 x^3+27 x^2+x+27$
- $y^2=132 x^6+102 x^5+39 x^4+14 x^3+36 x^2+54 x+57$
- $y^2=44 x^6+70 x^5+66 x^4+60 x^3+129 x^2+53 x+79$
- $y^2=26 x^6+50 x^5+111 x^4+22 x^3+105 x^2+114 x+77$
- $y^2=119 x^6+13 x^5+89 x^4+38 x^3+15 x^2+51 x+80$
- $y^2=117 x^6+58 x^5+74 x^4+98 x^3+87 x^2+23 x+87$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{137}$.
Endomorphism algebra over $\F_{137}$| The endomorphism algebra of this simple isogeny class is 4.0.27200.2. | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.137.bo_zq | $2$ | (not in LMFDB) | 
