Invariants
| Base field: | $\F_{131}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 40 x + 654 x^{2} - 5240 x^{3} + 17161 x^{4}$ |
| Frobenius angles: | $\pm0.0235496779948$, $\pm0.229984320500$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.10496.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $14$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $12536$ | $289531456$ | $5051125076984$ | $86730324300637184$ | $1488376396692829099576$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $92$ | $16870$ | $2246852$ | $294500334$ | $38579473452$ | $5053910740246$ | $662062559772692$ | $86730202464162654$ | $11361656642558724092$ | $1488377021629244382150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):
- $y^2=127 x^6+112 x^5+121 x^4+73 x^3+104 x^2+124 x+79$
- $y^2=47 x^6+92 x^5+15 x^4+118 x^3+106 x^2+37 x+70$
- $y^2=67 x^6+106 x^5+16 x^4+114 x^3+60 x^2+73 x+75$
- $y^2=18 x^6+82 x^5+73 x^4+73 x^3+119 x^2+125 x+62$
- $y^2=115 x^6+78 x^5+70 x^4+57 x^3+43 x^2+2 x+59$
- $y^2=9 x^6+27 x^5+105 x^4+128 x^3+8 x^2+30 x+124$
- $y^2=67 x^6+65 x^5+19 x^4+115 x^3+78 x^2+74 x+116$
- $y^2=75 x^6+51 x^5+114 x^4+120 x^3+97 x^2+78 x+67$
- $y^2=4 x^6+11 x^5+127 x^4+11 x^3+100 x^2+116 x+30$
- $y^2=96 x^6+76 x^5+43 x^4+125 x^3+55 x^2+29 x+103$
- $y^2=127 x^6+50 x^5+123 x^4+38 x^3+46 x^2+68 x+46$
- $y^2=77 x^6+87 x^5+47 x^4+x^3+43 x^2+119 x+66$
- $y^2=72 x^6+49 x^5+10 x^4+112 x^3+27 x^2+49 x+8$
- $y^2=13 x^6+76 x^5+35 x^4+86 x^3+13 x^2+74 x+101$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{131}$.
Endomorphism algebra over $\F_{131}$| The endomorphism algebra of this simple isogeny class is 4.0.10496.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.131.bo_ze | $2$ | (not in LMFDB) |