Properties

Label 2.131.abo_ze
Base field $\F_{131}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{131}$
Dimension:  $2$
L-polynomial:  $1 - 40 x + 654 x^{2} - 5240 x^{3} + 17161 x^{4}$
Frobenius angles:  $\pm0.0235496779948$, $\pm0.229984320500$
Angle rank:  $2$ (numerical)
Number field:  4.0.10496.2
Galois group:  $D_{4}$
Jacobians:  $14$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $12536$ $289531456$ $5051125076984$ $86730324300637184$ $1488376396692829099576$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $92$ $16870$ $2246852$ $294500334$ $38579473452$ $5053910740246$ $662062559772692$ $86730202464162654$ $11361656642558724092$ $1488377021629244382150$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{131}$.

Endomorphism algebra over $\F_{131}$
The endomorphism algebra of this simple isogeny class is 4.0.10496.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.131.bo_ze$2$(not in LMFDB)