Invariants
| Base field: | $\F_{131}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 39 x + 635 x^{2} - 5109 x^{3} + 17161 x^{4}$ |
| Frobenius angles: | $\pm0.0788342236470$, $\pm0.237540823431$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.6395805.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $16$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $12649$ | $290231305$ | $5053124458291$ | $86734647129520845$ | $1488384671153805237904$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $93$ | $16911$ | $2247741$ | $294515011$ | $38579687928$ | $5053913809683$ | $662062605059403$ | $86730203143711411$ | $11361656652444533151$ | $1488377021762900521926$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=54 x^6+116 x^5+5 x^4+112 x^3+67 x^2+84 x+22$
- $y^2=92 x^6+123 x^5+62 x^4+41 x^3+5 x^2+89 x+87$
- $y^2=89 x^6+94 x^5+77 x^4+4 x^3+104 x^2+78 x+47$
- $y^2=30 x^6+93 x^5+32 x^4+25 x^3+75 x^2+11 x+92$
- $y^2=23 x^6+113 x^5+85 x^4+72 x^3+11 x^2+64 x+44$
- $y^2=22 x^6+44 x^5+67 x^4+93 x^3+29 x^2+107 x+26$
- $y^2=110 x^6+42 x^5+61 x^4+89 x^3+84 x^2+14 x+89$
- $y^2=8 x^6+84 x^5+18 x^4+93 x^3+57 x^2+111 x+118$
- $y^2=x^6+79 x^5+100 x^4+43 x^3+18 x^2+77 x+77$
- $y^2=96 x^6+98 x^5+112 x^4+33 x^3+36 x^2+17 x+27$
- $y^2=21 x^6+127 x^5+79 x^4+129 x^3+7 x^2+107 x+47$
- $y^2=87 x^6+126 x^5+36 x^4+16 x^3+52 x^2+75 x+120$
- $y^2=8 x^6+69 x^5+14 x^4+84 x^3+85 x^2+107 x+44$
- $y^2=18 x^6+67 x^5+112 x^4+114 x^3+110 x^2+52 x+25$
- $y^2=24 x^6+26 x^5+102 x^4+91 x^3+90 x^2+80 x+29$
- $y^2=115 x^6+116 x^5+94 x^4+127 x^3+126 x^2+124 x+23$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{131}$.
Endomorphism algebra over $\F_{131}$| The endomorphism algebra of this simple isogeny class is 4.0.6395805.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.131.bn_yl | $2$ | (not in LMFDB) |