Properties

Label 2.131.abn_yl
Base field $\F_{131}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{131}$
Dimension:  $2$
L-polynomial:  $1 - 39 x + 635 x^{2} - 5109 x^{3} + 17161 x^{4}$
Frobenius angles:  $\pm0.0788342236470$, $\pm0.237540823431$
Angle rank:  $2$ (numerical)
Number field:  4.0.6395805.1
Galois group:  $D_{4}$
Jacobians:  $16$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $12649$ $290231305$ $5053124458291$ $86734647129520845$ $1488384671153805237904$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $93$ $16911$ $2247741$ $294515011$ $38579687928$ $5053913809683$ $662062605059403$ $86730203143711411$ $11361656652444533151$ $1488377021762900521926$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{131}$.

Endomorphism algebra over $\F_{131}$
The endomorphism algebra of this simple isogeny class is 4.0.6395805.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.131.bn_yl$2$(not in LMFDB)