Invariants
| Base field: | $\F_{131}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 39 x + 632 x^{2} - 5109 x^{3} + 17161 x^{4}$ |
| Frobenius angles: | $\pm0.0409844205625$, $\pm0.247789329099$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.3751992.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $8$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $12646$ | $290124532$ | $5052333713800$ | $86731510318365600$ | $1488375982039853925706$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $93$ | $16905$ | $2247390$ | $294504361$ | $38579462703$ | $5053910111682$ | $662062555387053$ | $86730202577712721$ | $11361656646684984330$ | $1488377021704698764505$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):
- $y^2=31 x^6+7 x^5+52 x^4+47 x^3+25 x^2+11 x+128$
- $y^2=128 x^6+95 x^5+89 x^4+124 x^3+55 x^2+47 x+78$
- $y^2=76 x^6+6 x^5+108 x^4+34 x^3+73 x^2+19 x+119$
- $y^2=8 x^6+68 x^5+83 x^4+54 x^3+51 x^2+28 x+58$
- $y^2=127 x^6+127 x^5+79 x^4+19 x^3+112 x^2+118 x+40$
- $y^2=51 x^6+7 x^5+33 x^4+126 x^3+99 x^2+97 x+51$
- $y^2=118 x^6+45 x^5+124 x^4+57 x^3+86 x^2+68 x+66$
- $y^2=105 x^6+101 x^5+52 x^4+68 x^3+115 x^2+101 x+69$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{131}$.
Endomorphism algebra over $\F_{131}$| The endomorphism algebra of this simple isogeny class is 4.0.3751992.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.131.bn_yi | $2$ | (not in LMFDB) |