Properties

Label 2.13.g_ba
Base field $\F_{13}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{13}$
Dimension:  $2$
L-polynomial:  $( 1 + 13 x^{2} )( 1 + 6 x + 13 x^{2} )$
  $1 + 6 x + 26 x^{2} + 78 x^{3} + 169 x^{4}$
Frobenius angles:  $\pm0.5$, $\pm0.812832958189$
Angle rank:  $1$ (numerical)
Jacobians:  $18$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $280$ $31360$ $4791640$ $812851200$ $137415909400$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $20$ $186$ $2180$ $28462$ $370100$ $4835274$ $62739620$ $815674078$ $10604612180$ $137858551386$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{13^{2}}$.

Endomorphism algebra over $\F_{13}$
The isogeny class factors as 1.13.a $\times$ 1.13.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{13}$
The base change of $A$ to $\F_{13^{2}}$ is 1.169.ak $\times$ 1.169.ba. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.13.ag_ba$2$2.169.q_da
2.13.ae_ba$4$(not in LMFDB)
2.13.e_ba$4$(not in LMFDB)