Invariants
Base field: | $\F_{13}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - x + 13 x^{2} )( 1 + 2 x + 13 x^{2} )$ |
$1 + x + 24 x^{2} + 13 x^{3} + 169 x^{4}$ | |
Frobenius angles: | $\pm0.455715642762$, $\pm0.589456187511$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $10$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $208$ | $37440$ | $4758208$ | $803462400$ | $138014610448$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $15$ | $217$ | $2166$ | $28129$ | $371715$ | $4829254$ | $62747007$ | $815741281$ | $10604422158$ | $137857922257$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=10 x^5+8 x^4+6 x^3+9 x^2+5 x+1$
- $y^2=5 x^6+5 x^5+8 x^3+6 x^2+6 x+5$
- $y^2=3 x^6+7 x^5+9 x^4+9 x^3+3 x^2+12 x+4$
- $y^2=5 x^5+2 x^3+10 x+12$
- $y^2=10 x^6+7 x^5+x^4+9 x^3+6 x^2+6 x$
- $y^2=3 x^6+8 x^5+10 x^4+6 x^3+6 x^2+10 x$
- $y^2=4 x^6+2 x^5+2 x^4+5 x^3+10 x^2+8 x+11$
- $y^2=11 x^6+4 x^5+3 x^4+7 x^3+6 x^2+4 x+8$
- $y^2=11 x^6+6 x^4+2 x^3+6 x^2+3 x+10$
- $y^2=11 x^6+6 x^5+11 x^4+11 x^3+5 x^2+10 x+7$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{13}$.
Endomorphism algebra over $\F_{13}$The isogeny class factors as 1.13.ab $\times$ 1.13.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.