Invariants
Base field: | $\F_{13}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 2 x + 19 x^{2} - 26 x^{3} + 169 x^{4}$ |
Frobenius angles: | $\pm0.321851226346$, $\pm0.581600614126$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.116288.1 |
Galois group: | $D_{4}$ |
Jacobians: | $18$ |
Isomorphism classes: | 18 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $161$ | $34937$ | $4886672$ | $816722249$ | $138140196201$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $12$ | $204$ | $2226$ | $28596$ | $372052$ | $4822662$ | $62721972$ | $815770404$ | $10604847162$ | $137858444284$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=5 x^6+8 x^5+2 x^4+2 x^3+12 x^2+11 x+10$
- $y^2=2 x^6+11 x^5+3 x^4+9 x^3+12 x+10$
- $y^2=2 x^6+6 x^5+9 x^4+3 x^3+3 x+5$
- $y^2=3 x^6+6 x^5+6 x^4+9 x^3+10 x^2+12 x+3$
- $y^2=12 x^6+8 x^5+x^4+9 x^3+12 x^2+12$
- $y^2=8 x^6+11 x^5+8 x^4+11 x^3+5 x^2+8 x+7$
- $y^2=8 x^6+3 x^5+2 x^4+10 x^3+6 x^2+6 x+6$
- $y^2=2 x^6+12 x^5+4 x^4+4 x^3+8 x^2+12 x+7$
- $y^2=4 x^6+x^5+x^4+x^3+8 x^2+9 x+3$
- $y^2=10 x^6+6 x^5+9 x^4+8 x^2+10 x+5$
- $y^2=7 x^6+4 x^5+7 x^4+5 x^3+9 x^2+6 x+11$
- $y^2=4 x^6+6 x^5+x^4+12 x^3+7 x^2+12 x+7$
- $y^2=8 x^6+5 x^5+11 x^4+8 x^3+10 x^2+10 x+9$
- $y^2=11 x^6+3 x^5+11 x^4+4 x^3+x^2+8 x+8$
- $y^2=4 x^6+2 x^5+x^4+4 x^3+4 x^2+10 x+4$
- $y^2=12 x^6+3 x^5+3 x^4+5 x^3+7 x^2+12 x+2$
- $y^2=8 x^6+7 x^5+3 x^4+12 x^3+x^2+9$
- $y^2=12 x^6+12 x^5+3 x^4+4 x^3+3 x^2+5 x+6$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{13}$.
Endomorphism algebra over $\F_{13}$The endomorphism algebra of this simple isogeny class is 4.0.116288.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.13.c_t | $2$ | 2.169.bi_wx |