Invariants
| Base field: | $\F_{127}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 21 x + 127 x^{2} )^{2}$ |
| $1 - 42 x + 695 x^{2} - 5334 x^{3} + 16129 x^{4}$ | |
| Frobenius angles: | $\pm0.118304318667$, $\pm0.118304318667$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $11449$ | $254179249$ | $4190716671376$ | $67673824264408761$ | $1091540664935025415009$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $86$ | $15756$ | $2045864$ | $260139220$ | $33038575586$ | $4195877933022$ | $532875939365870$ | $67675235266898404$ | $8594754760094421368$ | $1091533853184292325436$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2=3 x^6+20 x^5+124 x^4+60 x^3+124 x^2+20 x+3$
- $y^2=118 x^6+111 x^5+38 x^4+71 x^3+17 x^2+121 x+99$
- $y^2=63 x^6+63 x^5+126 x^4+119 x^3+14 x^2+93 x+53$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{127}$.
Endomorphism algebra over $\F_{127}$| The isogeny class factors as 1.127.av 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-67}) \)$)$ |
Base change
This is a primitive isogeny class.