Invariants
| Base field: | $\F_{127}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 40 x + 652 x^{2} - 5080 x^{3} + 16129 x^{4}$ |
| Frobenius angles: | $\pm0.100978501051$, $\pm0.191394081692$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.10496.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $14$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $11662$ | $255421124$ | $4193827529374$ | $67678956681654416$ | $1091545938577012339582$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $88$ | $15834$ | $2047384$ | $260158950$ | $33038735208$ | $4195877912058$ | $532875910372264$ | $67675234618495614$ | $8594754750460300888$ | $1091533853075762614714$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):
- $y^2=114 x^6+122 x^5+98 x^4+70 x^3+84 x^2+13 x+81$
- $y^2=41 x^6+120 x^5+57 x^4+111 x^3+50 x^2+58 x+97$
- $y^2=84 x^6+99 x^5+109 x^4+71 x^3+8 x^2+112 x+48$
- $y^2=85 x^6+37 x^5+76 x^4+38 x^3+119 x^2+61 x+48$
- $y^2=124 x^6+3 x^5+59 x^4+34 x^3+103 x^2+76 x+72$
- $y^2=37 x^6+115 x^5+15 x^4+117 x^3+27 x^2+12 x+17$
- $y^2=8 x^6+124 x^5+24 x^4+69 x^3+112 x^2+48 x+29$
- $y^2=106 x^6+22 x^5+122 x^4+59 x^3+115 x^2+107 x+30$
- $y^2=67 x^6+9 x^5+54 x^4+17 x^3+33 x^2+98 x+88$
- $y^2=65 x^6+116 x^5+102 x^4+70 x^3+x^2+26 x+60$
- $y^2=33 x^6+94 x^5+53 x^4+54 x^3+120 x^2+90 x+28$
- $y^2=27 x^6+88 x^5+82 x^4+117 x^3+70 x^2+92 x+46$
- $y^2=55 x^6+48 x^5+103 x^4+76 x^3+36 x^2+56 x+119$
- $y^2=66 x^6+21 x^5+8 x^4+100 x^3+82 x^2+26 x+120$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{127}$.
Endomorphism algebra over $\F_{127}$| The endomorphism algebra of this simple isogeny class is 4.0.10496.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.127.bo_zc | $2$ | (not in LMFDB) |