Properties

Label 2.127.abn_yi
Base field $\F_{127}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{127}$
Dimension:  $2$
L-polynomial:  $( 1 - 21 x + 127 x^{2} )( 1 - 18 x + 127 x^{2} )$
  $1 - 39 x + 632 x^{2} - 4953 x^{3} + 16129 x^{4}$
Frobenius angles:  $\pm0.118304318667$, $\pm0.205563304889$
Angle rank:  $2$ (numerical)
Jacobians:  $8$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $11770$ $256044580$ $4195396396840$ $67681646472132000$ $1091549223650441180350$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $89$ $15873$ $2048150$ $260169289$ $33038834639$ $4195878467946$ $532875908567273$ $67675234525787761$ $8594754749127032330$ $1091533853063772839193$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{127}$.

Endomorphism algebra over $\F_{127}$
The isogeny class factors as 1.127.av $\times$ 1.127.as and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.127.ad_aeu$2$(not in LMFDB)
2.127.d_aeu$2$(not in LMFDB)
2.127.bn_yi$2$(not in LMFDB)