Properties

Label 2.127.abl_wj
Base field $\F_{127}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{127}$
Dimension:  $2$
L-polynomial:  $1 - 37 x + 581 x^{2} - 4699 x^{3} + 16129 x^{4}$
Frobenius angles:  $\pm0.0346920051049$, $\pm0.275796665246$
Angle rank:  $2$ (numerical)
Number field:  4.0.733037.1
Galois group:  $D_{4}$
Jacobians:  $15$
Isomorphism classes:  15

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $11975$ $256827825$ $4195339833725$ $67675581680572125$ $1091528039269590878000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $91$ $15923$ $2048125$ $260145979$ $33038193436$ $4195867748591$ $532875781719547$ $67675233491565091$ $8594754745019461825$ $1091533853090705008718$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 15 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{127}$.

Endomorphism algebra over $\F_{127}$
The endomorphism algebra of this simple isogeny class is 4.0.733037.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.127.bl_wj$2$(not in LMFDB)