Invariants
| Base field: | $\F_{127}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 37 x + 581 x^{2} - 4699 x^{3} + 16129 x^{4}$ |
| Frobenius angles: | $\pm0.0346920051049$, $\pm0.275796665246$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.733037.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $15$ |
| Isomorphism classes: | 15 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $11975$ | $256827825$ | $4195339833725$ | $67675581680572125$ | $1091528039269590878000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $91$ | $15923$ | $2048125$ | $260145979$ | $33038193436$ | $4195867748591$ | $532875781719547$ | $67675233491565091$ | $8594754745019461825$ | $1091533853090705008718$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 15 curves (of which all are hyperelliptic):
- $y^2=11 x^6+15 x^5+44 x^4+116 x^3+95 x^2+69 x+17$
- $y^2=58 x^6+49 x^5+121 x^4+107 x^3+61 x^2+113 x+118$
- $y^2=29 x^6+116 x^5+19 x^4+11 x^3+29 x^2+39$
- $y^2=55 x^6+90 x^5+54 x^4+18 x^3+28 x^2+17 x+106$
- $y^2=43 x^6+5 x^5+33 x^4+86 x^3+53 x^2+35 x+120$
- $y^2=80 x^6+121 x^5+96 x^4+74 x^3+87 x^2+37 x+46$
- $y^2=109 x^6+124 x^5+75 x^4+89 x^3+125 x^2+73 x+6$
- $y^2=68 x^6+51 x^5+12 x^4+41 x^3+113 x^2+98 x+108$
- $y^2=75 x^6+3 x^5+98 x^4+82 x^3+45 x^2+30 x+13$
- $y^2=126 x^6+15 x^5+102 x^4+26 x^3+89 x^2+60 x+55$
- $y^2=67 x^6+22 x^5+49 x^4+86 x^3+112 x^2+25 x+23$
- $y^2=95 x^6+93 x^5+98 x^4+81 x^3+66 x^2+109 x+76$
- $y^2=4 x^6+72 x^5+38 x^4+54 x^2+101 x+87$
- $y^2=28 x^6+27 x^5+44 x^4+113 x^3+7 x^2+39 x+13$
- $y^2=86 x^6+78 x^5+114 x^4+121 x^3+96 x^2+5 x+116$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{127}$.
Endomorphism algebra over $\F_{127}$| The endomorphism algebra of this simple isogeny class is 4.0.733037.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.127.bl_wj | $2$ | (not in LMFDB) |