Invariants
| Base field: | $\F_{11^{2}}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 11 x )^{2}( 1 - 18 x + 121 x^{2} )$ |
| $1 - 40 x + 638 x^{2} - 4840 x^{3} + 14641 x^{4}$ | |
| Frobenius angles: | $0$, $0$, $\pm0.194982229042$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $10$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $10400$ | $209664000$ | $3134957789600$ | $45948288282624000$ | $672749968943582660000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $82$ | $14318$ | $1769602$ | $214352158$ | $25937423602$ | $3138427883918$ | $379749810661282$ | $45949729354708798$ | $5559917305391377042$ | $672749994829453514798$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=8 a x^6+8 a x^5+a x^3+6 a x+7 a$
- $y^2=(3 a+2) x^6+(3 a+1) x^5+a x^4+4 x^3+(8 a+3) x^2+(8 a+10) x+a+7$
- $y^2=10 a x^6+a x^5+3 a x^4+5 a x^2+4 a x+8 a$
- $y^2=3 a x^5+5 a x^4+5 a x^3+a x^2+a x$
- $y^2=6 a x^5+8 a x^4+10 a x^3+2 a x^2+10 a x$
- $y^2=7 a x^6+8 a x^5+4 a x^4+2 a x^3+3 a x^2+10 a x+10 a$
- $y^2=(8 a+9) x^6+(8 a+8) x^5+(10 a+3) x^4+(10 a+9) x^3+(4 a+10) x^2+(7 a+7) x+5 a+7$
- $y^2=(8 a+3) x^6+(8 a+2) x^5+(10 a+4) x^4+4 x^3+(3 a+2) x^2+(3 a+9) x+10 a$
- $y^2=(4 a+2) x^6+(2 a+3) x^5+(5 a+8) x^4+(6 a+2) x^3+(2 a+1) x^2+(10 a+4) x+8 a+4$
- $y^2=10 a x^6+5 a x^5+4 a x^4+3 a x^2+9 a x+8 a$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11^{2}}$.
Endomorphism algebra over $\F_{11^{2}}$The isogeny class factors as 1.121.aw $\times$ 1.121.as and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.