Invariants
| Base field: | $\F_{11^{2}}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 21 x + 121 x^{2} )( 1 - 18 x + 121 x^{2} )$ |
| $1 - 39 x + 620 x^{2} - 4719 x^{3} + 14641 x^{4}$ | |
| Frobenius angles: | $\pm0.0963413489042$, $\pm0.194982229042$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $12$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $10504$ | $210290080$ | $3136772587936$ | $45952353597870720$ | $672757843669116140104$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $83$ | $14361$ | $1770626$ | $214371121$ | $25937727203$ | $3138432287118$ | $379749869935883$ | $45949730105662561$ | $5559917314417897106$ | $672749994932860926201$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=(a+8) x^6+(5 a+7) x^5+(a+9) x^4+(8 a+5) x^3+(4 a+1) x^2+(6 a+1) x+7 a+7$
- $y^2=(6 a+3) x^6+(8 a+8) x^5+(5 a+3) x^4+(6 a+3) x^3+(6 a+8) x^2+(6 a+3) x+5 a+2$
- $y^2=(a+2) x^6+(7 a+4) x^5+(9 a+6) x^4+(3 a+6) x^3+3 a x^2+9 a x+7$
- $y^2=(7 a+2) x^6+8 x^5+(8 a+10) x^4+8 x^3+(9 a+8) x^2+(6 a+2) x+6 a+8$
- $y^2=(a+7) x^6+(6 a+1) x^5+(7 a+10) x^4+(10 a+7) x^3+6 a x^2+(2 a+2) x+3 a+3$
- $y^2=(8 a+7) x^6+(4 a+4) x^5+(a+3) x^4+(6 a+4) x^3+(10 a+4) x^2+(2 a+1) x+a+9$
- $y^2=(10 a+8) x^6+(9 a+6) x^5+(4 a+3) x^4+a x^3+4 x^2+(a+10) x+a+1$
- $y^2=(7 a+1) x^6+(2 a+3) x^5+(2 a+5) x^4+(7 a+6) x^3+(2 a+1) x^2+(9 a+9) x+1$
- $y^2=3 x^6+(4 a+7) x^5+(a+1) x^4+(4 a+6) x^3+(5 a+7) x^2+(7 a+6) x+8 a+8$
- $y^2=(3 a+7) x^6+(4 a+10) x^5+(3 a+7) x^4+(9 a+2) x^3+(5 a+4) x^2+(a+6) x+9 a+4$
- $y^2=(9 a+8) x^6+(6 a+10) x^5+(a+2) x^4+a x^3+(5 a+2) x^2+(2 a+5) x+3 a$
- $y^2=(5 a+9) x^6+4 x^5+(2 a+8) x^4+(9 a+4) x^3+(9 a+2) x^2+(5 a+9) x+7 a+10$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11^{2}}$.
Endomorphism algebra over $\F_{11^{2}}$| The isogeny class factors as 1.121.av $\times$ 1.121.as and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.121.ad_afg | $2$ | (not in LMFDB) |
| 2.121.d_afg | $2$ | (not in LMFDB) |
| 2.121.bn_xw | $2$ | (not in LMFDB) |