Properties

Label 2.121.abn_xw
Base field $\F_{11^{2}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{11^{2}}$
Dimension:  $2$
L-polynomial:  $( 1 - 21 x + 121 x^{2} )( 1 - 18 x + 121 x^{2} )$
  $1 - 39 x + 620 x^{2} - 4719 x^{3} + 14641 x^{4}$
Frobenius angles:  $\pm0.0963413489042$, $\pm0.194982229042$
Angle rank:  $2$ (numerical)
Jacobians:  $12$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10504$ $210290080$ $3136772587936$ $45952353597870720$ $672757843669116140104$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $83$ $14361$ $1770626$ $214371121$ $25937727203$ $3138432287118$ $379749869935883$ $45949730105662561$ $5559917314417897106$ $672749994932860926201$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):

where $a$ is a root of the Conway polynomial.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{11^{2}}$.

Endomorphism algebra over $\F_{11^{2}}$
The isogeny class factors as 1.121.av $\times$ 1.121.as and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.121.ad_afg$2$(not in LMFDB)
2.121.d_afg$2$(not in LMFDB)
2.121.bn_xw$2$(not in LMFDB)