Invariants
| Base field: | $\F_{11^{2}}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 21 x + 121 x^{2} )( 1 - 15 x + 121 x^{2} )$ |
| $1 - 36 x + 557 x^{2} - 4356 x^{3} + 14641 x^{4}$ | |
| Frobenius angles: | $\pm0.0963413489042$, $\pm0.261189521777$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $44$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $10807$ | $211719937$ | $3139193843968$ | $45953732930873625$ | $672754298622262473727$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $86$ | $14460$ | $1771994$ | $214377556$ | $25937590526$ | $3138428495022$ | $379749820441406$ | $45949729773931876$ | $5559917315671205354$ | $672749995001954839980$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=(4 a+2) x^6+(9 a+5) x^5+(a+9) x^4+(10 a+7) x^3+(a+9) x^2+(9 a+5) x+4 a+2$
- $y^2=(7 a+6) x^6+(4 a+4) x^5+(4 a+5) x^4+(5 a+4) x^3+(7 a+1) x^2+(6 a+6) x+8 a+5$
- $y^2=(8 a+4) x^6+(8 a+7) x^5+a x^4+(9 a+5) x^3+(3 a+7) x^2+5 a x+4$
- $y^2=(3 a+7) x^6+(4 a+1) x^5+(3 a+4) x^4+(3 a+1) x^3+(5 a+3) x^2+3 x+6 a+9$
- $y^2=(9 a+9) x^6+(3 a+9) x^5+(8 a+5) x^4+(a+3) x^3+(10 a+2) x^2+6 a x+4 a+6$
- $y^2=(5 a+8) x^6+(3 a+4) x^5+(7 a+10) x^4+(7 a+1) x^3+(8 a+5) x^2+(6 a+1) x+a+7$
- $y^2=x^6+(5 a+1) x^5+(8 a+8) x^4+x^3+(6 a+7) x^2+(7 a+8) x+2 a+5$
- $y^2=6 a x^6+(9 a+9) x^5+(3 a+6) x^4+8 a x^2+(3 a+10) x+2 a+3$
- $y^2=(3 a+5) x^6+(a+9) x^5+(5 a+10) x^4+(8 a+6) x^3+(4 a+7) x^2+3 x+3 a+7$
- $y^2=(6 a+4) x^6+(5 a+6) x^5+(5 a+5) x^4+10 a x^3+(4 a+9) x^2+(10 a+8) x+10 a+5$
- $y^2=(3 a+7) x^6+(7 a+10) x^5+(10 a+2) x^4+2 a x^3+(2 a+10) x^2+(a+5) x+6 a+5$
- $y^2=(9 a+10) x^6+(8 a+1) x^5+(10 a+9) x^4+(7 a+9) x^3+(10 a+9) x^2+(8 a+1) x+9 a+10$
- $y^2=(8 a+4) x^6+(2 a+7) x^5+(2 a+6) x^4+3 x^3+4 x^2+(7 a+6) x+5 a+6$
- $y^2=(2 a+10) x^6+a x^5+(6 a+3) x^4+(9 a+4) x^3+(6 a+6) x^2+(4 a+8) x+2 a+10$
- $y^2=(a+7) x^6+10 x^5+(10 a+2) x^4+(6 a+7) x^3+(4 a+4) x^2+(7 a+3) x+a+5$
- $y^2=(a+6) x^6+(8 a+8) x^5+(10 a+5) x^4+2 x^3+(9 a+2) x^2+(9 a+4) x+2 a+10$
- $y^2=(7 a+8) x^6+(2 a+10) x^5+(6 a+5) x^4+(7 a+9) x^3+(6 a+5) x^2+(2 a+10) x+7 a+8$
- $y^2=(2 a+9) x^6+(4 a+2) x^5+(4 a+7) x^4+(2 a+4) x^3+(4 a+7) x^2+(4 a+2) x+2 a+9$
- $y^2=(2 a+3) x^6+(6 a+10) x^5+(7 a+6) x^4+4 a x^3+3 x^2+(8 a+5) x+3 a+7$
- $y^2=9 a x^6+(2 a+1) x^5+(7 a+9) x^4+4 x^3+(2 a+3) x^2+7 x+5 a+2$
- and 24 more
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11^{2}}$.
Endomorphism algebra over $\F_{11^{2}}$| The isogeny class factors as 1.121.av $\times$ 1.121.ap and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.121.ag_acv | $2$ | (not in LMFDB) |
| 2.121.g_acv | $2$ | (not in LMFDB) |
| 2.121.bk_vl | $2$ | (not in LMFDB) |