Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x + 373 x^{2} - 2825 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.239051555039$, $\pm0.353240637974$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.104456069.1 |
Galois group: | $D_{4}$ |
Jacobians: | $56$ |
Isomorphism classes: | 56 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10293$ | $164615949$ | $2087549443341$ | $26589691413337941$ | $339457116683558773968$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $12891$ | $1446773$ | $163079555$ | $18424372294$ | $2081949658947$ | $235260529522093$ | $26584441893772579$ | $3004041937834588649$ | $339456738976051429086$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=96 x^6+49 x^5+80 x^4+91 x^3+21 x^2+37 x+98$
- $y^2=109 x^6+72 x^5+11 x^4+39 x^3+88 x^2+69 x+95$
- $y^2=55 x^6+3 x^5+50 x^4+89 x^3+14 x^2+96 x+73$
- $y^2=66 x^6+85 x^5+98 x^4+42 x^3+55 x^2+99 x+35$
- $y^2=45 x^6+82 x^5+47 x^4+38 x^3+30 x^2+79 x+38$
- $y^2=55 x^6+111 x^5+86 x^4+20 x^3+60 x^2+37 x+23$
- $y^2=10 x^6+92 x^5+67 x^4+92 x^3+104 x+22$
- $y^2=72 x^6+96 x^5+19 x^4+76 x^3+43 x^2+31 x+103$
- $y^2=65 x^6+68 x^5+46 x^4+13 x^3+41 x^2+89 x+12$
- $y^2=35 x^6+75 x^5+6 x^4+111 x^3+90 x^2+60 x+50$
- $y^2=44 x^6+46 x^5+34 x^4+104 x^3+51 x^2+79 x+16$
- $y^2=16 x^6+45 x^5+5 x^4+18 x^3+92 x^2+111 x+73$
- $y^2=84 x^6+96 x^5+24 x^4+102 x^3+29 x^2+46 x+107$
- $y^2=16 x^6+72 x^5+108 x^4+44 x^3+109 x^2+58 x+24$
- $y^2=71 x^6+63 x^5+2 x^4+32 x^3+111 x^2+71 x+41$
- $y^2=86 x^6+108 x^5+54 x^4+31 x^3+64 x^2+93 x+30$
- $y^2=60 x^6+23 x^5+13 x^4+23 x^3+88 x^2+10 x+18$
- $y^2=37 x^6+3 x^5+106 x^4+45 x^3+30 x^2+54 x+66$
- $y^2=20 x^6+104 x^5+42 x^4+63 x^3+20 x^2+81 x+29$
- $y^2=111 x^6+107 x^5+71 x^4+21 x^3+81 x^2+108 x+55$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.104456069.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.z_oj | $2$ | (not in LMFDB) |