Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x + 372 x^{2} - 2825 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.235515891975$, $\pm0.355912945687$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.31562456.1 |
Galois group: | $D_{4}$ |
Jacobians: | $54$ |
Isomorphism classes: | 54 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10292$ | $164589664$ | $2087441059904$ | $26589526713424256$ | $339457132801470154132$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $12889$ | $1446698$ | $163078545$ | $18424373169$ | $2081949902398$ | $235260533407793$ | $26584441913626209$ | $3004041937543502474$ | $339456738969221909289$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 54 curves (of which all are hyperelliptic):
- $y^2=38 x^6+35 x^5+30 x^4+52 x^3+34 x^2+13 x+102$
- $y^2=83 x^6+20 x^5+39 x^4+35 x^3+26 x^2+29 x+31$
- $y^2=39 x^6+76 x^5+109 x^4+47 x^3+63 x^2+57 x+27$
- $y^2=78 x^6+27 x^5+88 x^3+98 x^2+84 x+11$
- $y^2=101 x^6+61 x^5+60 x^4+105 x^3+67 x^2+61 x+105$
- $y^2=38 x^6+74 x^5+x^4+69 x^3+57 x^2+68 x+25$
- $y^2=69 x^6+78 x^5+27 x^4+73 x^3+53 x^2+49 x+55$
- $y^2=6 x^6+4 x^5+32 x^4+64 x^3+59 x^2+41 x+27$
- $y^2=27 x^6+45 x^5+91 x^4+92 x^3+7 x^2+23 x+21$
- $y^2=24 x^6+107 x^5+80 x^4+42 x^3+96 x^2+65 x+33$
- $y^2=82 x^6+18 x^5+96 x^4+88 x^3+45 x^2+69 x+12$
- $y^2=37 x^6+34 x^5+112 x^4+57 x^3+105 x^2+x+90$
- $y^2=23 x^6+46 x^5+41 x^4+53 x^3+85 x^2+79 x+70$
- $y^2=34 x^6+43 x^5+43 x^4+33 x^3+17 x^2+92 x+2$
- $y^2=63 x^6+36 x^5+105 x^4+83 x^3+60 x^2+74 x+60$
- $y^2=75 x^6+22 x^5+112 x^4+53 x^3+40 x^2+32 x+31$
- $y^2=19 x^6+3 x^5+95 x^4+88 x^3+93 x^2+25 x+69$
- $y^2=67 x^6+28 x^5+81 x^4+34 x^3+109 x^2+96 x+54$
- $y^2=19 x^6+85 x^5+111 x^4+98 x^3+33 x^2+81 x+10$
- $y^2=32 x^6+109 x^5+10 x^4+97 x^3+72 x^2+49 x+111$
- and 34 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.31562456.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.z_oi | $2$ | (not in LMFDB) |