Properties

Label 2.113.az_nj
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 25 x + 347 x^{2} - 2825 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.165909966308$, $\pm0.400109600639$
Angle rank:  $2$ (numerical)
Number field:  4.0.911126349.1
Galois group:  $D_{4}$
Jacobians:  $60$
Isomorphism classes:  60

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10267$ $163933189$ $2084732183779$ $26585197554062581$ $339456038840321603632$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $89$ $12839$ $1444823$ $163051995$ $18424313794$ $2081953752023$ $235260599724043$ $26584442360739859$ $3004041936977029349$ $339456738937713236414$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.911126349.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.z_nj$2$(not in LMFDB)