Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x + 347 x^{2} - 2825 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.165909966308$, $\pm0.400109600639$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.911126349.1 |
Galois group: | $D_{4}$ |
Jacobians: | $60$ |
Isomorphism classes: | 60 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10267$ | $163933189$ | $2084732183779$ | $26585197554062581$ | $339456038840321603632$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $12839$ | $1444823$ | $163051995$ | $18424313794$ | $2081953752023$ | $235260599724043$ | $26584442360739859$ | $3004041936977029349$ | $339456738937713236414$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=88 x^6+99 x^5+81 x^4+48 x^3+16 x^2+41 x+55$
- $y^2=107 x^6+110 x^5+x^4+106 x^3+9 x^2+41 x+3$
- $y^2=2 x^6+50 x^5+74 x^4+71 x^3+5 x^2+102 x+31$
- $y^2=76 x^6+64 x^5+11 x^4+66 x^3+38 x^2+87 x+44$
- $y^2=42 x^6+13 x^5+87 x^4+20 x^3+29 x^2+16 x+7$
- $y^2=31 x^6+63 x^5+63 x^4+18 x^3+66 x^2+9 x+44$
- $y^2=111 x^6+112 x^5+96 x^4+60 x^3+11 x^2+35 x+104$
- $y^2=19 x^6+53 x^5+58 x^4+43 x^3+15 x^2+57 x+34$
- $y^2=107 x^6+107 x^5+2 x^4+51 x^3+49 x+58$
- $y^2=5 x^6+73 x^5+35 x^4+92 x^3+13 x^2+98 x$
- $y^2=84 x^6+82 x^5+88 x^4+90 x^3+69 x^2+18 x+57$
- $y^2=10 x^6+65 x^5+26 x^4+60 x^3+35 x^2+104 x+2$
- $y^2=19 x^6+39 x^5+24 x^4+71 x^3+25 x^2+38 x+20$
- $y^2=78 x^6+91 x^5+95 x^4+45 x^3+87 x^2+40 x+33$
- $y^2=60 x^6+86 x^5+30 x^4+15 x^3+50 x^2+94 x+74$
- $y^2=33 x^6+54 x^5+86 x^4+60 x^3+34 x^2+73 x+96$
- $y^2=43 x^6+61 x^5+81 x^4+30 x^3+24 x^2+71 x+24$
- $y^2=58 x^6+77 x^5+73 x^4+8 x^3+52 x^2+10 x+91$
- $y^2=40 x^6+52 x^5+85 x^4+x^3+23 x^2+42 x+58$
- $y^2=75 x^6+27 x^5+32 x^4+79 x^3+42 x^2+89 x+84$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.911126349.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.z_nj | $2$ | (not in LMFDB) |