Properties

Label 2.113.az_ng
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 25 x + 344 x^{2} - 2825 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.158309788024$, $\pm0.403997633729$
Angle rank:  $2$ (numerical)
Number field:  4.0.3063400.2
Galois group:  $D_{4}$
Jacobians:  $108$
Isomorphism classes:  108

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10264$ $163854496$ $2084407207936$ $26584650698260096$ $339455714116166194264$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $89$ $12833$ $1444598$ $163048641$ $18424296169$ $2081953920062$ $235260603271993$ $26584442390668033$ $3004041937359540374$ $339456738946153015553$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 108 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.3063400.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.z_ng$2$(not in LMFDB)