Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x + 329 x^{2} - 2825 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.118776341890$, $\pm0.421305169432$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1158043725.1 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10249$ | $163461301$ | $2082782604121$ | $26581828470903781$ | $339453468686393653264$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $12803$ | $1443473$ | $163031331$ | $18424174294$ | $2081953792307$ | $235260604804993$ | $26584442380270723$ | $3004041938618972249$ | $339456738993945611678$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=4 x^6+25 x^5+49 x^4+2 x^3+22 x^2+46 x+78$
- $y^2=95 x^6+54 x^5+109 x^4+28 x^3+110 x^2+74 x+92$
- $y^2=92 x^6+58 x^5+6 x^4+51 x^3+82 x^2+28 x+88$
- $y^2=32 x^6+11 x^5+33 x^4+95 x^3+107 x^2+79 x+85$
- $y^2=34 x^6+34 x^5+82 x^4+54 x^3+65 x^2+94 x+65$
- $y^2=68 x^6+73 x^5+67 x^4+39 x^3+59 x^2+41$
- $y^2=33 x^6+54 x^5+28 x^4+55 x^3+80 x^2+52 x+23$
- $y^2=11 x^6+22 x^5+81 x^4+94 x^3+51 x^2+94 x$
- $y^2=37 x^6+67 x^5+109 x^4+15 x^3+90 x^2+86 x+11$
- $y^2=80 x^6+12 x^5+104 x^4+87 x^3+4 x^2+33 x+67$
- $y^2=91 x^6+75 x^5+96 x^4+15 x^3+12 x^2+65 x+28$
- $y^2=108 x^6+35 x^5+30 x^4+76 x^3+25 x^2+72 x+63$
- $y^2=85 x^6+2 x^5+24 x^4+40 x^3+53 x^2+62 x+7$
- $y^2=20 x^6+31 x^5+54 x^4+6 x^3+51 x^2+88 x+72$
- $y^2=21 x^6+87 x^5+10 x^4+53 x^3+101 x^2+12 x+93$
- $y^2=80 x^6+49 x^5+27 x^4+48 x^3+13 x^2+18 x+55$
- $y^2=33 x^6+25 x^5+106 x^4+44 x^3+6 x^2+53 x+48$
- $y^2=61 x^5+95 x^4+91 x^3+25 x^2+34 x+63$
- $y^2=65 x^6+47 x^5+85 x^4+61 x^2+89 x+70$
- $y^2=88 x^6+15 x^5+60 x^4+31 x^3+23 x^2+70 x+13$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.1158043725.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.z_mr | $2$ | (not in LMFDB) |