Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x + 314 x^{2} - 2825 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0690964705090$, $\pm0.436110748201$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.678213900.1 |
Galois group: | $D_{4}$ |
Jacobians: | $32$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10234$ | $163068556$ | $2081158444456$ | $26578859643164416$ | $339450186897965643514$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $12773$ | $1442348$ | $163013121$ | $18423996169$ | $2081952021602$ | $235260576727993$ | $26584441994262913$ | $3004041935908594124$ | $339456738997453314053$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=98 x^6+92 x^5+93 x^4+110 x^3+33 x^2+88 x+69$
- $y^2=108 x^6+42 x^5+81 x^4+x^3+67 x^2+90 x+78$
- $y^2=90 x^6+66 x^5+53 x^4+84 x^3+103 x^2+21 x+25$
- $y^2=12 x^6+74 x^5+46 x^4+101 x^3+49 x^2+35 x+91$
- $y^2=26 x^6+70 x^5+102 x^4+76 x^3+67 x^2+67 x+12$
- $y^2=110 x^6+33 x^5+40 x^4+106 x^3+21 x^2+83 x+6$
- $y^2=80 x^6+38 x^5+3 x^4+91 x^3+111 x^2+96 x+15$
- $y^2=97 x^6+60 x^5+87 x^4+15 x^3+100 x^2+33 x+108$
- $y^2=19 x^6+93 x^5+46 x^4+73 x^3+54 x^2+x+27$
- $y^2=75 x^6+53 x^5+65 x^4+59 x^3+30 x^2+33 x+107$
- $y^2=6 x^6+58 x^5+98 x^4+33 x^3+26 x^2+78 x+51$
- $y^2=54 x^6+69 x^5+21 x^4+15 x^3+88 x^2+28 x+69$
- $y^2=6 x^6+26 x^5+45 x^4+81 x^3+76 x^2+73 x+93$
- $y^2=55 x^6+8 x^5+30 x^4+66 x^3+74 x^2+67 x+71$
- $y^2=54 x^6+6 x^5+63 x^4+88 x^3+6 x^2+83 x+42$
- $y^2=4 x^6+41 x^5+111 x^4+13 x^3+10 x^2+110 x+4$
- $y^2=15 x^6+93 x^5+20 x^4+93 x^3+56 x^2+x+90$
- $y^2=21 x^6+74 x^5+75 x^4+13 x^3+57 x^2+25 x+38$
- $y^2=66 x^6+57 x^5+43 x^4+76 x^3+50 x^2+85 x+21$
- $y^2=85 x^6+56 x^5+75 x^4+27 x^3+85 x^2+55 x+45$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.678213900.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.z_mc | $2$ | (not in LMFDB) |