Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x + 312 x^{2} - 2825 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0601744223071$, $\pm0.437945754370$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.137076296.1 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10232$ | $163016224$ | $2080941922304$ | $26578452721579136$ | $339449671022827141432$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $12769$ | $1442198$ | $163010625$ | $18423968169$ | $2081951659198$ | $235260570556793$ | $26584441906362369$ | $3004041935027601974$ | $339456738990177773889$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=83 x^6+99 x^5+73 x^4+93 x^3+68 x^2+39 x+4$
- $y^2=34 x^6+17 x^5+31 x^4+22 x^3+5 x+31$
- $y^2=101 x^6+25 x^5+67 x^4+108 x^3+49 x^2+10 x+51$
- $y^2=22 x^6+68 x^5+88 x^4+64 x^3+29 x^2+54 x+18$
- $y^2=67 x^6+15 x^5+30 x^4+112 x^3+85 x^2+27 x+75$
- $y^2=108 x^6+87 x^5+44 x^4+48 x^3+19 x^2+90 x+42$
- $y^2=42 x^6+72 x^5+87 x^4+4 x^3+74 x^2+36 x+63$
- $y^2=33 x^6+40 x^5+45 x^4+112 x^3+43 x+75$
- $y^2=84 x^6+103 x^5+13 x^4+38 x^3+50 x^2+22 x+76$
- $y^2=12 x^6+17 x^5+4 x^4+31 x^3+33 x^2+95 x+57$
- $y^2=41 x^6+3 x^5+23 x^4+42 x^3+86 x^2+3 x+13$
- $y^2=33 x^6+6 x^5+68 x^4+8 x^3+26 x^2+107 x$
- $y^2=110 x^6+x^5+76 x^4+83 x^3+37 x^2+6 x+73$
- $y^2=45 x^6+47 x^5+44 x^4+90 x^3+102 x^2+5$
- $y^2=79 x^6+38 x^5+107 x^4+48 x^3+20 x^2+63 x+13$
- $y^2=107 x^6+84 x^5+65 x^4+18 x^3+17 x^2+88 x+28$
- $y^2=29 x^6+21 x^5+72 x^4+42 x^3+27 x^2+93 x+76$
- $y^2=74 x^6+85 x^5+103 x^4+37 x^3+100 x^2+27 x+108$
- $y^2=14 x^6+80 x^5+95 x^4+94 x^3+52 x^2+4 x+20$
- $y^2=48 x^6+44 x^5+3 x^4+2 x^3+18 x^2+81 x+10$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.137076296.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.z_ma | $2$ | (not in LMFDB) |