Properties

Label 2.113.az_lz
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 25 x + 311 x^{2} - 2825 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.0552381004409$, $\pm0.438852685630$
Angle rank:  $2$ (numerical)
Number field:  4.0.476709525.1
Galois group:  $D_{4}$
Jacobians:  $24$
Isomorphism classes:  48

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10231$ $162990061$ $2080833664039$ $26578248283257541$ $339449406176107357936$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $89$ $12767$ $1442123$ $163009371$ $18423953794$ $2081951466743$ $235260567247543$ $26584441858794163$ $3004041934529954549$ $339456738985616425022$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.476709525.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.z_lz$2$(not in LMFDB)