Properties

Label 2.113.az_ly
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $( 1 - 21 x + 113 x^{2} )( 1 - 4 x + 113 x^{2} )$
  $1 - 25 x + 310 x^{2} - 2825 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.0498602789898$, $\pm0.439752777404$
Angle rank:  $2$ (numerical)
Jacobians:  $54$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10230$ $162963900$ $2080725407640$ $26578043193240000$ $339449136723282780150$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $89$ $12765$ $1442048$ $163008113$ $18423939169$ $2081951266770$ $235260563787793$ $26584441808753953$ $3004041933992497424$ $339456738980401853325$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 54 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The isogeny class factors as 1.113.av $\times$ 1.113.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.ar_fm$2$(not in LMFDB)
2.113.r_fm$2$(not in LMFDB)
2.113.z_ly$2$(not in LMFDB)