Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 21 x + 113 x^{2} )( 1 - 4 x + 113 x^{2} )$ |
$1 - 25 x + 310 x^{2} - 2825 x^{3} + 12769 x^{4}$ | |
Frobenius angles: | $\pm0.0498602789898$, $\pm0.439752777404$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $54$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10230$ | $162963900$ | $2080725407640$ | $26578043193240000$ | $339449136723282780150$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $12765$ | $1442048$ | $163008113$ | $18423939169$ | $2081951266770$ | $235260563787793$ | $26584441808753953$ | $3004041933992497424$ | $339456738980401853325$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 54 curves (of which all are hyperelliptic):
- $y^2=78 x^6+6 x^5+110 x^4+12 x^3+91 x^2+21 x+46$
- $y^2=38 x^6+66 x^5+105 x^4+50 x^3+22 x^2+24 x+112$
- $y^2=60 x^6+25 x^5+55 x^4+76 x^3+83 x^2+89 x+46$
- $y^2=107 x^6+25 x^5+28 x^4+34 x^3+87 x^2+73 x+60$
- $y^2=24 x^6+110 x^5+75 x^4+76 x^3+5 x^2+88 x$
- $y^2=10 x^6+80 x^5+13 x^4+87 x^3+60 x^2+73 x+51$
- $y^2=29 x^6+83 x^5+93 x^4+106 x^3+101 x^2+12 x+1$
- $y^2=39 x^6+39 x^5+21 x^4+76 x^3+39 x^2+103 x+101$
- $y^2=64 x^6+11 x^5+22 x^4+5 x^3+78 x^2+78 x+92$
- $y^2=15 x^6+22 x^5+76 x^4+37 x^3+69 x^2+19 x+44$
- $y^2=50 x^6+100 x^5+91 x^4+78 x^3+98 x^2+13 x+100$
- $y^2=105 x^6+20 x^5+45 x^4+94 x^3+106 x^2+29 x+6$
- $y^2=109 x^6+39 x^5+14 x^4+35 x^3+85 x^2+8 x+87$
- $y^2=16 x^6+99 x^5+76 x^4+100 x^3+33 x^2+41 x+48$
- $y^2=21 x^6+61 x^5+84 x^4+66 x^3+48 x^2+90 x+37$
- $y^2=65 x^6+71 x^5+x^4+26 x^3+34 x^2+51 x+45$
- $y^2=79 x^6+39 x^5+29 x^4+15 x^3+54 x^2+86 x+54$
- $y^2=99 x^6+95 x^5+72 x^4+8 x^3+97 x+58$
- $y^2=100 x^6+26 x^5+73 x^4+24 x^3+103 x^2+91 x+46$
- $y^2=64 x^6+30 x^5+17 x^4+20 x^3+97 x^2+70 x+60$
- and 34 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The isogeny class factors as 1.113.av $\times$ 1.113.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.ar_fm | $2$ | (not in LMFDB) |
2.113.r_fm | $2$ | (not in LMFDB) |
2.113.z_ly | $2$ | (not in LMFDB) |