Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x + 307 x^{2} - 2825 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0285761308447$, $\pm0.442413484536$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.143964989.1 |
Galois group: | $D_{4}$ |
Jacobians: | $20$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10227$ | $162885429$ | $2080400649579$ | $26577424012937301$ | $339448300728147638832$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $12759$ | $1441823$ | $163004315$ | $18423893794$ | $2081950621623$ | $235260552495043$ | $26584441643350099$ | $3004041932128357349$ | $339456738960552266814$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=34 x^6+45 x^5+16 x^4+61 x^3+12 x^2+75 x+51$
- $y^2=11 x^6+16 x^5+105 x^4+46 x^3+102 x^2+23 x+110$
- $y^2=45 x^6+60 x^5+26 x^4+38 x^3+104 x^2+34 x+17$
- $y^2=108 x^6+112 x^5+37 x^4+81 x^3+22 x^2+32 x+16$
- $y^2=41 x^6+60 x^5+110 x^4+101 x^3+111 x^2+81 x+102$
- $y^2=87 x^6+74 x^5+69 x^4+77 x^3+43 x^2+13 x+88$
- $y^2=55 x^6+73 x^5+89 x^4+94 x^3+39 x^2+53 x+45$
- $y^2=65 x^6+96 x^5+64 x^4+x^3+112 x^2+70 x+84$
- $y^2=84 x^6+47 x^5+38 x^4+92 x^3+2 x^2+82 x+31$
- $y^2=29 x^6+85 x^5+26 x^4+26 x^3+32 x^2+67 x+1$
- $y^2=21 x^6+64 x^5+111 x^4+9 x^3+82 x^2+59 x+53$
- $y^2=108 x^6+35 x^5+102 x^4+29 x^3+5 x^2+32 x+55$
- $y^2=43 x^6+9 x^5+13 x^4+77 x^3+27 x^2+42 x+8$
- $y^2=103 x^6+25 x^5+43 x^4+68 x^3+39 x^2+44 x+24$
- $y^2=90 x^6+21 x^5+57 x^4+50 x^3+98 x^2+70 x+34$
- $y^2=84 x^6+41 x^5+32 x^4+109 x^3+56 x^2+109 x+90$
- $y^2=69 x^6+41 x^5+15 x^4+2 x^3+73 x^2+60 x$
- $y^2=31 x^6+44 x^5+33 x^4+34 x^3+106 x^2+90 x+10$
- $y^2=103 x^6+35 x^5+66 x^4+107 x^3+79 x^2+93 x+47$
- $y^2=52 x^6+54 x^5+20 x^4+34 x^3+92 x^2+48 x+87$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.143964989.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.z_lv | $2$ | (not in LMFDB) |