Properties

Label 2.113.ay_mw
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $( 1 - 18 x + 113 x^{2} )( 1 - 6 x + 113 x^{2} )$
  $1 - 24 x + 334 x^{2} - 2712 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.178616545187$, $\pm0.408930429474$
Angle rank:  $2$ (numerical)
Jacobians:  $822$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10368$ $164229120$ $2084967900288$ $26585317977292800$ $339456508582080670848$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $90$ $12862$ $1444986$ $163052734$ $18424339290$ $2081954146174$ $235260597573882$ $26584442215805566$ $3004041934974359898$ $339456738927972341182$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 822 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The isogeny class factors as 1.113.as $\times$ 1.113.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.am_eo$2$(not in LMFDB)
2.113.m_eo$2$(not in LMFDB)
2.113.y_mw$2$(not in LMFDB)