Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 329 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.166930835170$, $\pm0.415203978273$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.80138313.1 |
Galois group: | $D_{4}$ |
Jacobians: | $136$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10363$ | $164098105$ | $2084447976448$ | $26584520685251625$ | $339456221168927856523$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12852$ | $1444626$ | $163047844$ | $18424323690$ | $2081954558814$ | $235260603882282$ | $26584442263549636$ | $3004041935610675378$ | $339456738940809200532$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 136 curves (of which all are hyperelliptic):
- $y^2=90 x^6+34 x^5+110 x^4+10 x^3+47 x^2+92 x+70$
- $y^2=56 x^6+12 x^5+46 x^4+51 x^3+98 x^2+86 x+84$
- $y^2=14 x^6+104 x^5+104 x^4+52 x^3+75 x^2+99 x+50$
- $y^2=95 x^6+24 x^5+58 x^4+21 x^3+8 x^2+14 x+56$
- $y^2=34 x^6+45 x^5+58 x^4+22 x^3+72 x^2+97 x+74$
- $y^2=12 x^6+68 x^5+59 x^4+82 x^3+64 x^2+107 x+26$
- $y^2=44 x^6+52 x^5+32 x^4+99 x^3+43 x^2+42 x+76$
- $y^2=101 x^6+108 x^4+x^3+20 x^2+24 x+82$
- $y^2=27 x^6+24 x^5+41 x^4+66 x^3+90 x^2+17 x+78$
- $y^2=34 x^6+80 x^5+16 x^4+12 x^3+78 x^2+46 x+76$
- $y^2=51 x^6+22 x^5+89 x^4+41 x^3+96 x^2+57 x+33$
- $y^2=88 x^6+60 x^5+90 x^4+51 x^3+19 x^2+51 x+112$
- $y^2=112 x^6+51 x^5+82 x^4+107 x^3+106 x^2+92 x+20$
- $y^2=69 x^6+98 x^5+71 x^4+24 x^3+105 x^2+103 x+87$
- $y^2=40 x^6+74 x^5+76 x^4+20 x^3+88 x^2+100 x+34$
- $y^2=61 x^6+24 x^5+29 x^4+31 x^3+101 x^2+63 x+108$
- $y^2=20 x^6+97 x^5+31 x^4+77 x^3+107 x^2+54$
- $y^2=85 x^6+52 x^5+19 x^4+88 x^3+93 x^2+78 x+57$
- $y^2=43 x^6+71 x^5+74 x^4+106 x^3+9 x^2+63 x+31$
- $y^2=61 x^6+29 x^5+19 x^4+36 x^3+24 x^2+33 x+21$
- and 116 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.80138313.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.y_mr | $2$ | (not in LMFDB) |