Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 325 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.157569301917$, $\pm0.419929255310$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1081225.2 |
Galois group: | $D_{4}$ |
Jacobians: | $340$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10359$ | $163993329$ | $2084032072944$ | $26583871124425401$ | $339455911646867821839$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12844$ | $1444338$ | $163043860$ | $18424306890$ | $2081954773438$ | $235260607253706$ | $26584442291245924$ | $3004041936199602834$ | $339456738953682875164$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 340 curves (of which all are hyperelliptic):
- $y^2=20 x^6+106 x^5+61 x^4+95 x^3+34 x^2+20 x+46$
- $y^2=79 x^6+66 x^5+110 x^4+112 x^3+44 x^2+95 x+112$
- $y^2=8 x^6+5 x^5+24 x^4+35 x^3+85 x^2+84 x+15$
- $y^2=76 x^6+14 x^5+97 x^4+100 x^3+80 x^2+x+111$
- $y^2=12 x^6+37 x^5+96 x^4+111 x^3+10 x^2+37 x+84$
- $y^2=22 x^6+76 x^5+86 x^4+52 x^3+94 x^2+4 x+44$
- $y^2=27 x^6+5 x^5+72 x^4+96 x^3+40 x^2+69 x+80$
- $y^2=46 x^6+102 x^5+101 x^4+6 x^3+16 x^2+26$
- $y^2=2 x^6+108 x^5+40 x^4+50 x^3+46 x^2+70 x+58$
- $y^2=6 x^6+86 x^5+8 x^4+56 x^3+59 x^2+100 x+17$
- $y^2=14 x^6+39 x^5+34 x^4+112 x^3+41 x^2+66 x+32$
- $y^2=85 x^6+72 x^5+60 x^4+65 x^3+111 x^2+89 x+110$
- $y^2=109 x^6+66 x^5+19 x^4+64 x^3+6 x^2+37 x+43$
- $y^2=111 x^6+68 x^5+96 x^4+71 x^3+106 x^2+95 x+108$
- $y^2=79 x^6+43 x^5+110 x^4+87 x^3+48 x^2+101 x+64$
- $y^2=50 x^6+69 x^5+10 x^4+66 x^3+39 x^2+53 x+20$
- $y^2=35 x^6+35 x^5+51 x^4+41 x^3+30 x^2+104 x+55$
- $y^2=100 x^6+49 x^5+42 x^4+70 x^3+12 x^2+92 x+68$
- $y^2=17 x^6+38 x^5+42 x^4+24 x^3+100 x^2+106 x+44$
- $y^2=74 x^6+42 x^5+104 x^4+13 x^3+79 x^2+100 x+66$
- and 320 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.1081225.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.y_mn | $2$ | (not in LMFDB) |