Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 19 x + 113 x^{2} )( 1 - 5 x + 113 x^{2} )$ |
$1 - 24 x + 321 x^{2} - 2712 x^{3} + 12769 x^{4}$ | |
Frobenius angles: | $\pm0.148111132014$, $\pm0.424431965615$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $68$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10355$ | $163888585$ | $2083616200640$ | $26583211138882825$ | $339455531376490620275$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12836$ | $1444050$ | $163039812$ | $18424286250$ | $2081954884574$ | $235260609066090$ | $26584442306865028$ | $3004041936794474610$ | $339456738967890881636$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 68 curves (of which all are hyperelliptic):
- $y^2=76 x^6+96 x^5+62 x^4+34 x^3+38 x^2+38 x+70$
- $y^2=34 x^6+35 x^5+82 x^4+42 x^3+82 x^2+35 x+34$
- $y^2=34 x^6+56 x^5+41 x^4+60 x^3+41 x^2+56 x+34$
- $y^2=5 x^6+48 x^5+38 x^4+73 x^3+61 x^2+78 x+100$
- $y^2=36 x^6+9 x^5+66 x^4+107 x^3+43 x^2+110 x+19$
- $y^2=93 x^6+34 x^5+109 x^4+37 x^3+112 x^2+70 x+33$
- $y^2=40 x^6+89 x^5+9 x^4+7 x^3+110 x^2+23 x+90$
- $y^2=58 x^6+70 x^5+99 x^4+97 x^3+44 x^2+61 x+4$
- $y^2=6 x^6+15 x^5+32 x^4+49 x^3+14 x^2+37 x+28$
- $y^2=107 x^6+56 x^5+29 x^4+62 x^3+103 x^2+89 x+33$
- $y^2=85 x^6+98 x^5+65 x^4+36 x^3+11 x^2+65 x+35$
- $y^2=37 x^6+43 x^5+94 x^4+14 x^3+78 x^2+84 x+65$
- $y^2=103 x^6+50 x^5+13 x^4+85 x^3+103 x^2+81 x+90$
- $y^2=29 x^6+82 x^5+80 x^4+69 x^3+57 x^2+5 x+21$
- $y^2=12 x^6+49 x^5+112 x^4+64 x^3+x^2+85 x+112$
- $y^2=62 x^6+50 x^5+98 x^4+5 x^3+98 x^2+50 x+62$
- $y^2=x^6+4 x^5+100 x^4+19 x^3+7 x+82$
- $y^2=84 x^6+77 x^5+16 x^4+74 x^3+59 x^2+31 x+83$
- $y^2=70 x^6+93 x^5+51 x^4+99 x^3+44 x^2+53 x+110$
- $y^2=67 x^6+86 x^5+22 x^4+18 x^3+18 x^2+110 x+60$
- and 48 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The isogeny class factors as 1.113.at $\times$ 1.113.af and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.ao_fb | $2$ | (not in LMFDB) |
2.113.o_fb | $2$ | (not in LMFDB) |
2.113.y_mj | $2$ | (not in LMFDB) |