Properties

Label 2.113.ay_mj
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $( 1 - 19 x + 113 x^{2} )( 1 - 5 x + 113 x^{2} )$
  $1 - 24 x + 321 x^{2} - 2712 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.148111132014$, $\pm0.424431965615$
Angle rank:  $2$ (numerical)
Jacobians:  $68$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10355$ $163888585$ $2083616200640$ $26583211138882825$ $339455531376490620275$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $90$ $12836$ $1444050$ $163039812$ $18424286250$ $2081954884574$ $235260609066090$ $26584442306865028$ $3004041936794474610$ $339456738967890881636$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 68 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The isogeny class factors as 1.113.at $\times$ 1.113.af and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.ao_fb$2$(not in LMFDB)
2.113.o_fb$2$(not in LMFDB)
2.113.y_mj$2$(not in LMFDB)