Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 318 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.140903954155$, $\pm0.427679856373$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.375856.1 |
Galois group: | $D_{4}$ |
Jacobians: | $234$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10352$ | $163810048$ | $2083304316656$ | $26582709308207104$ | $339455199744973122032$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12830$ | $1443834$ | $163036734$ | $18424268250$ | $2081954899550$ | $235260609363450$ | $26584442309122174$ | $3004041937207606362$ | $339456738978836885150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 234 curves (of which all are hyperelliptic):
- $y^2=86 x^6+5 x^5+76 x^4+76 x^3+79 x^2+32 x+11$
- $y^2=29 x^6+20 x^5+45 x^4+107 x^3+24 x^2+95 x+109$
- $y^2=21 x^6+3 x^5+53 x^4+50 x^3+23 x^2+9 x+50$
- $y^2=79 x^6+x^5+87 x^4+84 x^3+60 x^2+46 x+101$
- $y^2=10 x^6+35 x^5+26 x^4+10 x^3+94 x^2+110 x+66$
- $y^2=44 x^6+53 x^5+48 x^4+27 x^3+25 x^2+27 x+21$
- $y^2=53 x^6+30 x^5+35 x^4+76 x^3+12 x^2+79 x+79$
- $y^2=98 x^6+57 x^5+39 x^4+66 x^3+84 x^2+87 x+27$
- $y^2=66 x^6+73 x^5+24 x^4+92 x^3+37 x^2+103 x+57$
- $y^2=83 x^6+25 x^5+73 x^4+x^3+23 x^2+51 x+35$
- $y^2=14 x^6+52 x^5+47 x^4+85 x^3+82 x^2+51 x+110$
- $y^2=96 x^6+20 x^5+89 x^4+46 x^3+35 x^2+85 x+71$
- $y^2=14 x^6+22 x^5+28 x^4+53 x^3+79 x^2+2 x+4$
- $y^2=41 x^6+74 x^5+58 x^4+18 x^3+73 x^2+6 x+87$
- $y^2=46 x^6+11 x^5+8 x^4+70 x^3+104 x^2+3 x+12$
- $y^2=68 x^6+39 x^5+17 x^4+93 x^3+13 x^2+49 x+50$
- $y^2=104 x^6+19 x^5+87 x^4+111 x^3+73 x^2+89 x+102$
- $y^2=86 x^6+24 x^5+68 x^4+107 x^3+9 x^2+99 x+53$
- $y^2=111 x^6+43 x^5+47 x^4+86 x^3+28 x^2+43 x+52$
- $y^2=23 x^6+27 x^5+34 x^4+50 x^3+40 x^2+5 x+108$
- and 214 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.375856.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.y_mg | $2$ | (not in LMFDB) |