Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 310 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.120865461278$, $\pm0.435875603602$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.24249600.1 |
Galois group: | $D_{4}$ |
Jacobians: | $168$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10344$ | $163600704$ | $2082472709544$ | $26581342422168576$ | $339454120834927649064$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12814$ | $1443258$ | $163028350$ | $18424209690$ | $2081954650318$ | $235260605484666$ | $26584442266709374$ | $3004041937954506714$ | $339456739005614105614$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 168 curves (of which all are hyperelliptic):
- $y^2=40 x^6+110 x^5+22 x^4+52 x^3+39 x^2+51 x+92$
- $y^2=17 x^6+90 x^5+104 x^4+71 x^3+51 x^2+49 x+35$
- $y^2=45 x^6+106 x^5+46 x^4+97 x^3+112 x^2+71 x+2$
- $y^2=27 x^6+54 x^5+69 x^4+27 x^3+x^2+80 x+19$
- $y^2=77 x^6+95 x^5+103 x^4+40 x^3+29 x^2+69 x+5$
- $y^2=11 x^6+65 x^5+31 x^4+86 x^3+53 x^2+28 x+108$
- $y^2=31 x^6+21 x^5+92 x^4+65 x^3+102 x^2+x+45$
- $y^2=49 x^6+70 x^5+38 x^4+33 x^3+84 x^2+17 x+85$
- $y^2=93 x^6+9 x^5+101 x^4+41 x^3+71 x^2+24 x+29$
- $y^2=93 x^6+66 x^4+100 x^3+29 x^2+63 x+20$
- $y^2=55 x^6+50 x^5+83 x^4+57 x^3+93 x^2+20 x+85$
- $y^2=7 x^6+66 x^5+50 x^4+24 x^3+75 x^2+99 x+13$
- $y^2=104 x^6+45 x^5+33 x^4+90 x^3+86 x^2+96 x+18$
- $y^2=57 x^6+27 x^5+38 x^4+16 x^3+75 x^2+69 x+92$
- $y^2=42 x^6+50 x^5+40 x^4+18 x^3+30 x^2+22 x+93$
- $y^2=80 x^5+81 x^4+33 x^3+12 x^2+76 x+47$
- $y^2=66 x^6+82 x^5+65 x^4+86 x^3+22 x^2+9 x+19$
- $y^2=52 x^6+70 x^5+17 x^4+16 x^3+75 x^2+87 x+58$
- $y^2=43 x^6+100 x^5+60 x^4+43 x^3+94 x^2+10 x+79$
- $y^2=104 x^6+60 x^5+10 x^4+95 x^3+44 x^2+29 x+67$
- and 148 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.24249600.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.y_ly | $2$ | (not in LMFDB) |