Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 307 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.112887268675$, $\pm0.438795981957$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.18609808.1 |
Galois group: | $D_{4}$ |
Jacobians: | $144$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10341$ | $163522233$ | $2082160887732$ | $26580819087735129$ | $339453643283635348701$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12808$ | $1443042$ | $163025140$ | $18424183770$ | $2081954447494$ | $235260602200602$ | $26584442229545380$ | $3004041938024011842$ | $339456739013387988088$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):
- $y^2=82 x^6+6 x^5+37 x^4+15 x^3+89 x^2+23 x+41$
- $y^2=107 x^6+16 x^5+7 x^4+99 x^3+95 x^2+103 x+92$
- $y^2=109 x^6+55 x^5+47 x^4+30 x^3+80 x^2+83 x+91$
- $y^2=95 x^6+18 x^5+98 x^4+73 x^3+71 x^2+96 x+84$
- $y^2=84 x^6+90 x^5+84 x^4+78 x^3+51 x^2+34 x+15$
- $y^2=96 x^6+9 x^5+53 x^4+53 x^3+51 x^2+94 x+66$
- $y^2=89 x^6+52 x^5+77 x^4+13 x^3+15 x^2+104 x+66$
- $y^2=48 x^6+41 x^5+7 x^4+43 x^3+65 x^2+91 x+66$
- $y^2=40 x^6+9 x^5+101 x^4+89 x^3+50 x^2+49 x+42$
- $y^2=76 x^6+88 x^5+3 x^4+22 x^3+85 x^2+76 x+93$
- $y^2=45 x^6+33 x^5+49 x^4+5 x^3+71 x^2+62 x+102$
- $y^2=46 x^6+33 x^5+24 x^4+47 x^3+17 x^2+17 x+49$
- $y^2=74 x^6+109 x^5+98 x^4+101 x^3+14 x^2+23 x+56$
- $y^2=96 x^6+10 x^5+2 x^4+96 x^3+64 x^2+9 x+1$
- $y^2=64 x^6+38 x^5+94 x^4+x^3+112 x^2+74 x+31$
- $y^2=57 x^6+18 x^5+33 x^4+107 x^3+49 x^2+53 x+11$
- $y^2=58 x^6+42 x^5+102 x^4+48 x^3+25 x^2+39 x+12$
- $y^2=33 x^6+107 x^5+72 x^4+74 x^3+69 x^2+101 x+72$
- $y^2=43 x^6+96 x^5+98 x^4+19 x^3+68 x^2+59 x+1$
- $y^2=81 x^6+11 x^5+45 x^3+62 x^2+104 x+43$
- and 124 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.18609808.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.y_lv | $2$ | (not in LMFDB) |