Properties

Label 2.113.ay_lq
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 24 x + 302 x^{2} - 2712 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.0987093432995$, $\pm0.443501947420$
Angle rank:  $2$ (numerical)
Number field:  4.0.83232.1
Galois group:  $D_{4}$
Jacobians:  $348$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10336$ $163391488$ $2081641221472$ $26579933829955584$ $339452758928057639776$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $90$ $12798$ $1442682$ $163019710$ $18424135770$ $2081953975614$ $235260594402042$ $26584442137521790$ $3004041937774563162$ $339456739021570490238$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 348 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.83232.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.y_lq$2$(not in LMFDB)