Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 301 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0957008964282$, $\pm0.444420647941$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.82731897.1 |
Galois group: | $D_{4}$ |
Jacobians: | $284$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10335$ | $163365345$ | $2081537293680$ | $26579754823275225$ | $339452568791399303175$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12796$ | $1442610$ | $163018612$ | $18424125450$ | $2081953861054$ | $235260592484490$ | $26584442114238628$ | $3004041937660397010$ | $339456739022309607436$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 284 curves (of which all are hyperelliptic):
- $y^2=90 x^6+84 x^5+8 x^4+10 x^3+91 x^2+20 x+72$
- $y^2=40 x^6+34 x^5+23 x^4+20 x^3+40 x^2+46 x+42$
- $y^2=45 x^6+106 x^5+29 x^4+5 x^3+43 x^2+32 x+112$
- $y^2=93 x^6+21 x^5+86 x^4+100 x^3+54 x^2+77 x+49$
- $y^2=49 x^6+89 x^5+77 x^4+82 x^3+10 x^2+106 x+9$
- $y^2=87 x^6+83 x^5+103 x^4+72 x^3+16 x^2+103 x+7$
- $y^2=16 x^6+89 x^5+x^4+110 x^3+40 x^2+87 x+61$
- $y^2=77 x^6+109 x^5+82 x^4+13 x^3+83 x^2+2 x+103$
- $y^2=28 x^6+46 x^5+95 x^4+2 x^3+63 x^2+87 x+68$
- $y^2=18 x^6+10 x^5+31 x^4+100 x^3+58 x^2+70 x+40$
- $y^2=40 x^6+91 x^5+58 x^4+112 x^3+35 x^2+3 x+44$
- $y^2=12 x^6+100 x^5+69 x^4+86 x^3+36 x^2+102 x+82$
- $y^2=47 x^6+106 x^5+11 x^4+7 x^3+31 x^2+4 x+39$
- $y^2=64 x^6+25 x^5+89 x^4+42 x^3+94 x^2+2 x+58$
- $y^2=95 x^6+45 x^5+74 x^4+3 x^3+23 x^2+92 x+78$
- $y^2=78 x^6+40 x^5+110 x^4+63 x^3+54 x^2+84 x+42$
- $y^2=60 x^6+8 x^5+66 x^4+16 x^3+96 x^2+3 x+25$
- $y^2=50 x^6+96 x^5+104 x^4+36 x^3+70 x^2+66 x+20$
- $y^2=3 x^6+94 x^5+106 x^4+104 x^3+98 x^2+79 x+62$
- $y^2=75 x^6+36 x^5+40 x^4+98 x^3+32 x^2+9 x+100$
- and 264 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.82731897.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.y_lp | $2$ | (not in LMFDB) |