Properties

Label 2.113.ay_lo
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 24 x + 300 x^{2} - 2712 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.0926205767236$, $\pm0.445332252509$
Angle rank:  $2$ (numerical)
Number field:  4.0.1279801600.1
Galois group:  $D_{4}$
Jacobians:  $48$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10334$ $163339204$ $2081433367694$ $26579575164869776$ $339452374232886007214$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $90$ $12794$ $1442538$ $163017510$ $18424114890$ $2081953739738$ $235260590445306$ $26584442089234174$ $3004041937522316634$ $339456739022701005914$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.1279801600.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.y_lo$2$(not in LMFDB)