Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 300 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0926205767236$, $\pm0.445332252509$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1279801600.1 |
Galois group: | $D_{4}$ |
Jacobians: | $48$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10334$ | $163339204$ | $2081433367694$ | $26579575164869776$ | $339452374232886007214$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12794$ | $1442538$ | $163017510$ | $18424114890$ | $2081953739738$ | $235260590445306$ | $26584442089234174$ | $3004041937522316634$ | $339456739022701005914$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=64 x^6+10 x^5+11 x^4+65 x^3+46 x^2+65 x+42$
- $y^2=32 x^6+73 x^5+31 x^4+22 x^3+16 x^2+49 x+103$
- $y^2=106 x^6+3 x^5+94 x^4+104 x^3+30 x^2+31 x+45$
- $y^2=29 x^6+99 x^5+49 x^4+95 x^3+22 x^2+31 x+87$
- $y^2=85 x^6+64 x^5+46 x^4+79 x^3+35 x^2+81 x+26$
- $y^2=4 x^6+49 x^5+17 x^4+60 x^3+33 x^2+50 x+35$
- $y^2=93 x^6+106 x^5+78 x^4+46 x^3+95 x^2+64 x+107$
- $y^2=46 x^6+4 x^5+49 x^4+31 x^3+86 x^2+94 x+102$
- $y^2=19 x^6+72 x^5+78 x^4+66 x^3+105 x^2+16 x+20$
- $y^2=x^6+110 x^5+57 x^4+16 x^3+68 x^2+83 x+59$
- $y^2=4 x^6+59 x^5+8 x^4+28 x^3+90 x^2+6 x+58$
- $y^2=102 x^6+3 x^5+91 x^4+82 x^3+106 x^2+76 x+7$
- $y^2=82 x^6+18 x^5+54 x^4+90 x^3+98 x^2+87 x+45$
- $y^2=52 x^6+99 x^5+78 x^4+55 x^2+58 x+75$
- $y^2=31 x^6+50 x^5+68 x^4+88 x^3+103 x^2+32 x+109$
- $y^2=49 x^6+58 x^5+61 x^4+41 x^3+18 x^2+15 x+102$
- $y^2=22 x^6+103 x^5+101 x^4+111 x^3+99 x^2+32 x+94$
- $y^2=56 x^6+50 x^5+78 x^4+74 x^3+5 x^2+46 x+8$
- $y^2=5 x^6+75 x^5+87 x^4+17 x^3+3 x^2+54 x+90$
- $y^2=68 x^6+3 x^5+40 x^4+3 x^3+29 x^2+100 x+64$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.1279801600.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.y_lo | $2$ | (not in LMFDB) |